1
|
Kumar SD, Lee JK, Radhakrishnan NK, Bang JK, Kim B, Chaudhary SC, Chelladurai A, Ganbaatar B, Kim EY, Lee CW, Yang S, Kim Y, Shin SY. Antibacterial, Antibiofilm, and Anti-inflammatory Effects of a Novel Thrombin-Derived Peptide in Sepsis Models: Insights into Underlying Mechanisms. J Med Chem 2024; 67:19791-19812. [PMID: 39475485 DOI: 10.1021/acs.jmedchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We developed two short helical antimicrobial peptides, HVF18-a3 and its d-enantiomer, HVF18-a3-d, derived from the thrombin C-terminal peptide HVF18. These peptides exhibit potent antimicrobial activity against various bacteria by compromising both the outer and inner membranes, with low hemolytic activity. They are stable in the presence of physiological salts and human serum, exhibiting a low potential for developing drug resistance and excellent antibiofilm activity against Gram-negative bacteria. HVF18-a3-d also neutralized lipopolysaccharide (LPS) through direct binding interactions and suppressed the production of inflammatory cytokines through the inflammatory signaling pathway mediated by Toll-like receptor 4 in RAW264.7 cells stimulated with LPS. Both pre- and post-treatment with HVF18-a3-d significantly protected mice against fatal septic shock induced by carbapenem resistant Acinetobacter baumannii. These findings suggest HVF18-a3 and HVF18-a3-d are promising candidates for developing antibiotics against Gram-negative sepsis.
Collapse
Affiliation(s)
- S Dinesh Kumar
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | | | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Dandicure Inc, Ochang, Chung Buk 28119, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Shubhash Chandra Chaudhary
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Ajish Chelladurai
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Byambasuren Ganbaatar
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun Young Kim
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Zhou Y, Zou P, Chen X, Chen P, Shi M, Lang J, Chen M. Overcoming Barriers in Photodynamic Therapy Harnessing Nanogenerators Strategies. Int J Biol Sci 2024; 20:5673-5694. [PMID: 39494340 PMCID: PMC11528466 DOI: 10.7150/ijbs.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Photodynamic therapy (PDT) represents a targeted approach for cancer treatment that employs light and photosensitizers (PSs) to induce the generation of reactive oxygen species (ROS). However, PDT faces obstacles including insufficient PS localization, limited light penetration, and treatment resistance. A potential solution lies in nanogenerators (NGs), which function as self-powered systems capable of generating electrical energy. Recent progress in piezoelectric and triboelectric NGs showcases promising applications in cancer research and drug delivery. Integration of NGs with PDT holds the promise of enhancing treatment efficacy by ensuring sustained PS illumination, enabling direct electrical control of cancer cells, and facilitating improved drug administration. This comprehensive review aims to augment our comprehension of PDT principles, explore associated challenges, and underscore the transformative capacity of NGs in conjunction with PDT. By harnessing NG technology alongside PDT, significant advancement in cancer treatment can be realized. Herein, we present the principal findings and conclusions of this study, offering valuable insights into the integration of NGs to overcome barriers in PDT.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Abdominal Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xingmin Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ping Chen
- Department of Abdominal Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
3
|
Shan X, Yin B, Liao X, Xiao B, He J, Li C. Exploration and Characterization of Antimicrobial Peptides from Shrimp Litopenaeus Vannamei by A Genomic and Transcriptomic Approach. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:975-990. [PMID: 39138702 DOI: 10.1007/s10126-024-10358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antimicrobial peptides (AMPs) are crucial in the humoral immunity aspect of invertebrates' innate immune systems. However, studies on AMP discovery in the Pacific white shrimp (Litopenaeus vannamei) using omics data have been limited. Addressing the growing concern of antibiotic resistance in aquaculture, this study focused on the identification and characterization of AMPs in L. vannamei using advanced genomic and transcriptomic techniques. The genome of L. vannamei was performed to predict and identify a total of 754 AMP-derived genes, distributed across most chromosomes and spanning 24 distinct AMP families, and further identified 236 AMP-derived genes at the mRNA level in hemocytes. A subset of 20 chemically synthesized peptides, derived from these genes, exhibited significant antimicrobial activity, with over 85% showing effectiveness against key bacterial strains such as Staphylococcus aureus and Vibrio parahaemolyticus. The expression patterns of these AMPs were also investigated in different shrimp tissues and at various infection stages, revealing dynamic responses to pathogenic challenges. These findings highlight the significant potential of AMPs in L. vannamei as novel, effective alternatives to traditional antibiotics in aquaculture, offering insights into their diverse structural properties and biological functions. Together, this comprehensive characterization of the AMP repertoire in L. vannamei demonstrates the efficacy of using omics data for AMP discovery and lays the groundwork for their potential applications.
Collapse
Affiliation(s)
- Xinxin Shan
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bin Yin
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China
| | - Xuzheng Liao
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bang Xiao
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China.
| | - Chaozheng Li
- School of Marine Sciences, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, P. R. China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
5
|
Puthia M, Petrlova J, Petruk G, Butrym M, Samsudin F, Andersson MÅ, Strömdahl A, Wasserstrom S, Hartman E, Kjellström S, Caselli L, Klementieva O, Bond PJ, Malmsten M, Raina DB, Schmidtchen A. Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation. Adv Healthc Mater 2023; 12:e2300987. [PMID: 37689972 PMCID: PMC11468473 DOI: 10.1002/adhm.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
Collapse
Affiliation(s)
- Manoj Puthia
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Jitka Petrlova
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Ganna Petruk
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Marta Butrym
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII)Agency for ScienceTechnology and Research (A*STAR)Singapore138671Singapore
| | - Madelene Å Andersson
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Ann‐Charlotte Strömdahl
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | | | - Erik Hartman
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Sven Kjellström
- Division of Mass SpectrometryDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | | | - Oxana Klementieva
- Medical Microspectroscopy LabDepartment of Experimental Medical SciencesFaculty of MedicineLund UniversityLundSE‐221 84Sweden
| | - Peter J. Bond
- Bioinformatics Institute (BII)Agency for ScienceTechnology and Research (A*STAR)Singapore138671Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Martin Malmsten
- Physical Chemistry 1Lund UniversityLundS‐221 00Sweden
- Department of PharmacyUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Deepak Bushan Raina
- Department of Clinical Sciences LundOrthopedicsFaculty of MedicineLund UniversityLundSE‐221 84Sweden
| | - Artur Schmidtchen
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
- DermatologySkane University HospitalLundSE‐22185Sweden
| |
Collapse
|
6
|
Petruk G, Puthia M, Samsudin F, Petrlova J, Olm F, Mittendorfer M, Hyllén S, Edström D, Strömdahl AC, Diehl C, Ekström S, Walse B, Kjellström S, Bond PJ, Lindstedt S, Schmidtchen A. Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs. Nat Commun 2023; 14:6097. [PMID: 37773180 PMCID: PMC10541425 DOI: 10.1038/s41467-023-41702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden.
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | | | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Dag Edström
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Ann-Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, SE-22184, Lund, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Dermatology, Skane University Hospital, SE-22185, Lund, Sweden
| |
Collapse
|
7
|
Thrombin-Derived C-Terminal Peptide Reduces Candida-Induced Inflammation and Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:e0103221. [PMID: 34424043 PMCID: PMC8522777 DOI: 10.1128/aac.01032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candidain vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-κB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-κB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
Collapse
|
8
|
Strömdahl AC, Ignatowicz L, Petruk G, Butrym M, Wasserstrom S, Schmidtchen A, Puthia M. Peptide-coated polyurethane material reduces wound infection and inflammation. Acta Biomater 2021; 128:314-331. [PMID: 33951491 DOI: 10.1016/j.actbio.2021.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023]
Abstract
There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. STATEMENT OF SIGNIFICANCE: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
Collapse
|
9
|
Petruk G, Elvén M, Hartman E, Davoudi M, Schmidtchen A, Puthia M, Petrlova J. The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. J Lipid Res 2021; 62:100086. [PMID: 34019903 PMCID: PMC8225977 DOI: 10.1016/j.jlr.2021.100086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 11/24/2022] Open
Abstract
ApoE is a well-known lipid-binding protein that plays a main role in the metabolism and transport of lipids. More recently, apoE-derived peptides have been shown to exert antimicrobial effects. Here, we investigated the antibacterial activity of apoE using in vitro assays, advanced imaging techniques, and in vivo mouse models. The formation of macromolecular complexes of apoE and endotoxins from Gram-negative bacteria was explored using gel shift assays, transmission electron microscopy, and CD spectroscopy followed by calculation of the α-helical content. The binding affinity of apoE to endotoxins was also confirmed by fluorescent spectroscopy detecting the quenching and shifting of tryptophan intrinsic fluorescence. We showed that apoE exhibits antibacterial activity particularly against Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli. ApoE protein folding was affected by binding of bacterial endotoxin components such as lipopolysaccharide (LPS) and lipid A, yielding similar increases in the apoE α-helical content. Moreover, high-molecular-weight complexes of apoE were formed in the presence of LPS, but not to the same extent as with lipid A. Together, our results demonstrate the ability of apoE to kill Gram-negative bacteria, interact with their endotoxins, which leads to the structural changes in apoE and the formation of aggregate-like complexes.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Elvén
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Mina Davoudi
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden; Division of Cancer and Infection Medicine, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden; Department of Biomedical Sciences, Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Division of Dermatology, Skane University Hospital, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|