1
|
Gamboa-Becerra R, Monribot-Villanueva JL, Carrión G, Guerrero-Analco JA, Desgarennes D. Exploring the Exo-Metabolomes and Volatile and Non-Volatile Compounds of Metarhizium Carneum and Lecanicillium Uredinophilum. Chem Biodivers 2024:e202401259. [PMID: 39141524 DOI: 10.1002/cbdv.202401259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Efforts are intensifying to identify bioactive microbial metabolites from biocontrol agents to manage plant pathogens in critical crops. This study examined both volatile organic compounds (VOCs) and non-volatile compounds from Metarhizium carneum and Lecanicillium uredinophilum strains for their antimicrobial effects against various phytopathogens and analyzed their exo-metabolomes. M. carneum VOCs inhibited four bacterial and eight fungal species by up to 45.45 %, while L. uredinophilum VOCs inhibited five bacterial and eight fungal species by up to 50.91 %. Additionally, n-BuOH extracts from both biocontrol agents effectively targeted three fungi and five bacteria. The exo-metabolomes of M. carneum and L. uredinophilum included 125 and 102 spectrometric features, respectively, primarily consisting of polyketides, alkaloids, lipids, organic aromatic compounds, terpenoids, and peptides. Our findings revealed a correlation between the phylogenetic relationships of M. carneum strains, their bioactivity patterns against phytopathogens, and their metabolomic profiles. Notably, some compounds detected in both fungi previously demonstrated biological activity against plant pathogens, enhancing their biocontrol potential. This study not only evidences the antimicrobial properties of diffusible compounds from M. carneum and L. uredinophilum, but also documents the antimicrobial potential of their VOCs for the first time, supporting their use in sustainable agricultural practices, reducing reliance on chemical inputs.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| | - Juan L Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| |
Collapse
|
2
|
Chen Y, Sewsurn S, Amand S, Kunz C, Pietrancosta N, Calabro K, Buisson D, Mann S. Metabolic Investigation and Auxiliary Enzyme Modelization of the Pyrrocidine Pathway Allow Rationalization of Paracyclophane-Decahydrofluorene Formation. ACS Chem Biol 2024; 19:886-895. [PMID: 38576157 DOI: 10.1021/acschembio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Fungal paracyclophane-decahydrofluorene-containing natural products are complex polycyclic metabolites derived from similar hybrid PKS-NRPS pathways. Herein we studied the biosynthesis of pyrrocidines, one representative of this family, by gene inactivation in the producer Sarocladium zeae coupled to thorough metabolic analysis and molecular modeling of key enzymes. We characterized nine pyrrocidines and analogues as well as in mutants a variety of accumulating metabolites with new structures including rare cis-decalin, cytochalasan, and fused 6/15/5 macrocycles. This diversity highlights the extraordinary plasticity of the pyrrocidine biosynthetic gene cluster. From accumulating metabolites, we delineated the scenario of pyrrocidine biosynthesis. The ring A of the decahydrofluorene is installed by PrcB, a membrane-bound cyclizing isomerase, on a PKS-NRPS-derived pyrrolidone precursor. Docking experiments in PrcB allowed us to characterize the active site suggesting a mechanism triggered by arginine-mediated deprotonation at the terminal methyl of the substrate. Next, two integral membrane proteins, PrcD and PrcE, each predicted as a four-helix bundle, perform hydroxylation of the pyrrolidone ring and paracyclophane formation, respectively. Modelization of PrcE highlights a topological homology with vitamin K oxido-reductase and the presence of a disulfide bond. Our results suggest a previously unsuspected coupling mechanism via a transient loss of aromaticity of tyrosine residue to form the strained paracyclophane motif. Finally, the lipocalin-like protein PrcX drives the exo-cycloaddition yielding ring B and C of the decahydrofluorene to afford pyrrocidine A, which is transformed by a reductase PrcI to form pyrrocidine B. These insights will greatly facilitate the microbial production of pyrrocidine analogues by synthetic biology.
Collapse
Affiliation(s)
- Youwei Chen
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Steffi Sewsurn
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Séverine Amand
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Caroline Kunz
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, F-75005 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France
- Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Kevin Calabro
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
3
|
Hajek AE, Everest TA, Clifton EH. Accumulation of Fungal Pathogens Infecting the Invasive Spotted Lanternfly, Lycorma delicatula. INSECTS 2023; 14:912. [PMID: 38132586 PMCID: PMC10871119 DOI: 10.3390/insects14120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, are abundant and spreading. Four species of naturally occurring entomopathogenic fungi have previously been reported as infecting these planthoppers, with two of these causing epizootics. Nymphal- and adult-stage lanternflies in Pennsylvania and New York were surveyed for entomopathogenic fungal infections from October 2021 to November 2023, and assays were conducted to confirm the pathogenicity of species that were potentially pathogenic. Beauveria bassiana was the most abundant pathogen, but we report an additional 15 previously unreported species of entomopathogenic fungi infecting spotted lanternflies, all in the order Hypocreales (Ascomycota). The next most common pathogens were Fusarium fujikuroi and Sarocladium strictum. While infection prevalence by species was often low, probably impacted to some extent by the summer drought in 2022, together these pathogens caused a total of 6.7% mortality. A significant trend was evident over time within a season, with low levels of infection among nymphs and higher infection levels in mid- and late-stage adults, the stages when mating and oviposition occur.
Collapse
Affiliation(s)
- Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
| | - Thomas A. Everest
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
| | - Eric H. Clifton
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; (T.A.E.); (E.H.C.)
- Research & Development, BioWorks Inc., Victor, NY 14564, USA
| |
Collapse
|
4
|
Rétif F, Kunz C, Calabro K, Duval C, Prado S, Bailly C, Baudouin E. Seed fungal endophytes as biostimulants and biocontrol agents to improve seed performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1260292. [PMID: 37941673 PMCID: PMC10628453 DOI: 10.3389/fpls.2023.1260292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Seed germination is a major determinant of plant development and final yield establishment but strongly reliant on the plant's abiotic and biotic environment. In the context of global climate change, classical approaches to improve seed germination under challenging environments through selection and use of synthetic pesticides reached their limits. A currently underexplored way is to exploit the beneficial impact of the microorganisms associated with plants. Among plant microbiota, endophytes, which are micro-organisms living inside host plant tissues without causing any visible symptoms, are promising candidates for improving plant fitness. They possibly establish a mutualistic relationship with their host, leading to enhanced plant yield and improved tolerance to abiotic threats and pathogen attacks. The current view is that such beneficial association relies on chemical mediations using the large variety of molecules produced by endophytes. In contrast to leaf and root endophytes, seed-borne fungal endophytes have been poorly studied although they constitute the early-life plant microbiota. Moreover, seed-borne fungal microbiota and its metabolites appear as a pertinent lever for seed quality improvement. This review summarizes the recent advances in the identification of seed fungal endophytes and metabolites and their benefits for seed biology, especially under stress. It also addresses the mechanisms underlying fungal effects on seed physiology and their potential use to improve crop seed performance.'
Collapse
Affiliation(s)
- Félix Rétif
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Caroline Kunz
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, Paris, France
| | - Kevin Calabro
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Clémence Duval
- Seedlab, Novalliance, Zone Anjou Actiparc, Longué-Jumelles, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| |
Collapse
|
5
|
Saidi A, Mebdoua S, Mecelem D, Al-Hoshani N, Sadrati N, Boufahja F, Bendif H. Dual biocontrol potential of the entomopathogenic fungus Akanthomyces muscarius against Thaumetopoea pityocampa and plant pathogenic fungi. Saudi J Biol Sci 2023; 30:103719. [PMID: 37457236 PMCID: PMC10344813 DOI: 10.1016/j.sjbs.2023.103719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Akanthomyces spp. species are known for their capacity to biocontrol of certain insects and plant pathogens; however, their ability to biocontrol the pine processionary (Thaumetopoea pityocampa) and certain phytopathogenic fungi belonging to the genera Fusarium and Curvularia have not been studied before. In this study, a strain from Akanthomyces muscarius was isolated from wheat grains and then identified by morphological and molecular tests. The strain was further studied for its capacity to control Thaumetopoea pityocampa larvae through dose-mortality tests, and its ability to control some phytopathogenic fungi strains of the genera Fusarium and Curvularia was studied through direct confrontation tests. Dose-mortality tests at three concentrations of Akanthomyces muscarius against the first instar larvae revealed a mortality of 92.15% after 11 days for the concentration of 2.3 × 106conidia.ml-1, with a median lethal concentration of 7.6 x103 conidia.ml1. Our isolate also showed antifungal activity against these phytopathogenic fungi with inhibition rates ranging from 39.61% to 52.94%. Akanthomyces muscarius proved to be a promising biocontrol agent for plant pests and diseases.
Collapse
Affiliation(s)
- Amal Saidi
- Laboratory de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Samira Mebdoua
- Department of Agronomic Sciences, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Dalila Mecelem
- Department of Agronomic Sciences, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira,10000 Bouira, Algeria
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouari Sadrati
- Laboratory of Characterization and Valorization of Natural Resources, University Mohamed El Bachir El Ibrahimi, Bordj Bou-Arreridj 34000, Algeria
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hamdi Bendif
- Natural and Life Sciences Department, Faculty of Sciences, Mohamed Boudiaf University, BP 166 Msila, 28000 Msila, Algeria
| |
Collapse
|
6
|
Carole Sanya AK, Madode YE, Schoustra SE, Smid EJ, Linnemann AR. Technological variations, microbial diversity and quality characteristics of maize ogi used for akpan production in Benin. Food Res Int 2023; 170:113038. [PMID: 37316091 DOI: 10.1016/j.foodres.2023.113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Fermented maize starch, called ogi in Benin, is used for preparing akpan, a traditional yoghurt-like food that contributes to the food and nutrition security of its consumers. Current ogi processing technologies used by two socio-cultural groups of Benin, namely the Fon and the Goun, and aspects of the quality of the fermented starches were studied to assess the current state-of-the-art, explore changes in key product characteristics over time and identify priorities for follow-up research to increase product quality and shelf life. A survey on processing technologies was conducted in five municipalities in south Benin and samples of maize starch were collected, which were analysed after the fermentation required to obtain ogi. Four processing technologies were identified, two from the Goun (G1, G2) and two from the Fon (F1, F2). The main difference between the four processing technologies was the steeping procedure used for the maize grains. The pH of the ogi samples ranged between 3.1 and 4.2, with the highest values for G1 samples, which also contained relatively higher concentrations of sucrose (0.05-0.3 g/L) than F1 samples (0.02-0.08 g/L), and lower citrate and lactate concentrations (0.2-0.3 and 5.6-16.9 g/L, respectively) than F2 samples (0.4-0.5 and 14-27.7 g/L, respectively). Fon samples collected in Abomey were particularly rich in volatile organic compounds and free essential amino acids. Members of the genera Lactobacillus (8.6-69.3%), Limosilactobacillus (5.4-79.1%), Streptococcus (0.6-59.3%) and Weissella (2.6-51.2%) dominated the bacterial microbiota of ogi with a significant abundance of Lactobacillus spp. in Goun samples. Sordariomycetes (10.6-81.9%) and Saccharomycetes (6.2-81.4%) dominated the fungal microbiota. The yeast community of ogi samples mainly consisted of the genera Diutina, Pichia, Kluyveromyces, Lachancea and unclassified members of the Dipodascaceae family. Hierarchical clustering of metabolic data showed similarities between samples from different technologies at a default threshold of 0.05. No obvious trend in the composition of the samples' microbial communities reflected the clusters observed for the metabolic characteristics. The results indicate that beyond the general impact of the use of Fon or Goun technologies on fermented maize starch, the individual contribution of processing practices warrants study, under controlled conditions, to determine the drivers of difference or similarity between maize ogi samples to further contribute to improving product quality and shelf life.
Collapse
Affiliation(s)
- A K Carole Sanya
- Food Quality and Design (FQD), Wageningen University and Research, The Netherlands, 6700 HB Wageningen, the Netherlands; Laboratoire des Sciences des Aliments (LSA), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Calavi, Benin.
| | - Yann E Madode
- Laboratoire des Sciences des Aliments (LSA), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Calavi, Benin.
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, the Netherlands; Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia.
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, the Netherlands.
| | - Anita R Linnemann
- Food Quality and Design (FQD), Wageningen University and Research, The Netherlands, 6700 HB Wageningen, the Netherlands.
| |
Collapse
|
7
|
Ren Z, Chen AJ, Zong Q, Du Z, Guo Q, Liu T, Chen W, Gao L. Microbiome Signature of Endophytes in Wheat Seed Response to Wheat Dwarf Bunt Caused by Tilletia controversa Kühn. Microbiol Spectr 2023; 11:e0039022. [PMID: 36625645 PMCID: PMC9927297 DOI: 10.1128/spectrum.00390-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.
Collapse
Affiliation(s)
- Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, People’s Republic of China
| | - Qianqian Zong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qingyuan Guo
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Epiphytic and Endophytic Fungi Colonizing Seeds of Two Poaceae Weed Species and Fusarium spp. Seed Degradation Potential In Vitro. Microorganisms 2023; 11:microorganisms11010184. [PMID: 36677476 PMCID: PMC9863844 DOI: 10.3390/microorganisms11010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Fungi colonizing the surface and endosphere of two widespread Poaceae weed species, Avena fatua and Echinochloa crus-galli, were isolated to compare the taxonomic composition between the plant species, location, and year of the seed collection. The seed-degrading potential of Fusarium isolated from the seeds was tested by inoculating seeds of E. crus-galli with spore suspension. Molecular identification of epiphytic and endophytic fungal genera was performed by sequencing the ITS region of rDNA. Endophytes comprised of significantly lower fungal richness compared to epiphytes. A significant taxonomic overlap was observed between the endosphere and seed surface. The most abundant genera were Alternaria, Fusarium, Cladosporium, and Sarocladium. Analysis of similarities and hierarchical clustering showed that microbial communities were more dissimilar between the two plant species than between the years. Fusarium isolates with a high potential to infect and degrade E. crus-galli seeds in laboratory conditions belong to F. sporotrichioides and F. culmorum.
Collapse
|
9
|
Zhang X, Lv H, Tian M, Dong Z, Fu Q, Sun J, Huang Q, Wang J. Colonization characteristics of fungi in Polygonum hydropipe L. and Polygonum lapathifolium L. and its effect on the content of active ingredients. FRONTIERS IN PLANT SCIENCE 2022; 13:984483. [PMID: 36247635 PMCID: PMC9554492 DOI: 10.3389/fpls.2022.984483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly used to treat various diseases, including gastrointestinal disorders, neurological disorders, inflammation, and diarrhea. However, because of different local standards of P. hydropiper, people often confuse it with Polygonum lapathifolium L. and other closely related plants. This poses a serious threat to the safety and efficacy of the clinical use of P. hydropiper. This study aims to determine the six active ingredients of P. hydropiper and P. lapathifolium. Then the endophytic fungi and rhizosphere soil of the two species were sequenced by Illumina Miseq PE300. The results show significant differences between the community composition of the leaves, stems, and roots of the P. hydropiper and the P. lapathifolium in the same soil environment. Of the six secondary metabolites detected, five had significant differences between P. hydropiper and P. lapathifolium. Then, we evaluated the composition of the significantly different communities between P. hydropiper and P. lapathifolium. In the P. hydropiper, the relative abundance of differential communities in the leaves was highest, of which Cercospora dominated the differential communities in the leaves and stem; in the P. lapathifolium, the relative abundance of differential community in the stem was highest, and Cladosporium dominated the differential communities in the three compartments. By constructing the interaction network of P. hydropiper and P. lapathifolium and analyzing the network nodes, we found that the core community in P. hydropiper accounted for 87.59% of the total community, dominated by Cercospora; the core community of P. lapathifolium accounted for 19.81% of the total community, dominated by Sarocladium. Of these core communities, 23 were significantly associated with active ingredient content. Therefore, we believe that the community from Cercospora significantly interferes with recruiting fungal communities in P. hydropiper and affects the accumulation of secondary metabolites in the host plant. These results provide an essential foundation for the large-scale production of P. hydropiper. They indicate that by colonizing specific fungal communities, secondary metabolic characteristics of host plants can be helped to be shaped, which is an essential means for developing new medicinal plants.
Collapse
Affiliation(s)
- Xiaorui Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoying Tian
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwen Fu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Sun
- Sichuan Fuzheng Pharmaceutical Co., Ltd., Chengdu, China
| | - Qinwan Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Shabana YM, Ghoneem KM, Rashad YM, Arafat NS, Fitt BDL, Richard B, Qi A. Distribution and Biodiversity of Seed-Borne Pathogenic and Toxigenic Fungi of Maize in Egypt and Their Correlations with Weather Variables. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182347. [PMID: 36145747 PMCID: PMC9506050 DOI: 10.3390/plants11182347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 05/23/2023]
Abstract
Studies of the biodiversity of plant pathogenic and toxigenic fungi are attracting great attention to improve the predictability of their epidemics and the development of their control programs. Two hundred maize grain samples were gathered from 25 maize-growing governorates in Egypt and 189 samples were processed for the isolation and identification of seed-borne fungal microbiome. Twenty-six fungal genera comprising 42 species were identified according to their morphological characteristics and ITS DNA sequence analysis. Occurrence and biodiversity indicators of these fungal species were calculated. Ustilago maydis, Alternaria alternata, Aspergillus flavus, A. niger, Penicillium spp., Cladosporium spp. and Fusarium verticillioides were the highly frequent (>90% for each), recording the highest relative abundance (˃50%). Al-Menia governorate showed the highest species diversity and richness, followed by Sohag, Al-Nobaria and New Valley governorates. Correlations of 18 fungal species with temperature, relative humidity, precipitation, wind speed, and solar radiation were analyzed using canonical correspondence analysis. Results showed that relative humidity, temperature, and wind speed, respectively, were the most impactful weather variables. However, the occurrence and distribution of these fungi were not clearly grouped into the distinctive climatic regions in which maize crops are grown. Monitoring the occurrence and distribution of the fungal pathogens of maize grains in Egypt will play an important role in predicting their outbreaks and developing appropriate future management strategies. The findings in this study may be useful to other maize-growing countries that have similar climatic conditions.
Collapse
Affiliation(s)
- Yasser M. Shabana
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21500, Egypt
| | - Nehal S. Arafat
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Benjamin Richard
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Aiming Qi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| |
Collapse
|
11
|
Johnston-Monje D, Gutiérrez JP, Becerra Lopez-Lavalle LA. Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants. Life (Basel) 2022; 12:life12091372. [PMID: 36143410 PMCID: PMC9506401 DOI: 10.3390/life12091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A plant’s health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant–microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.
Collapse
Affiliation(s)
- David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 76001, Colombia
- International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Correspondence: ; Tel.: +57-315-545-6227
| | | | | |
Collapse
|
12
|
Yan K, Pei Z, Meng L, Zheng Y, Wang L, Feng R, Li Q, Liu Y, Zhao X, Wei Q, El-Sappah AH, Abbas M. Determination of Community Structure and Diversity of Seed-Vectored Endophytic Fungi in Alpinia zerumbet. Front Microbiol 2022; 13:814864. [PMID: 35295292 PMCID: PMC8918987 DOI: 10.3389/fmicb.2022.814864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Endophytic fungi act as seed endosymbiont, thereby playing a very crucial role in the growth and development of seeds. Seed-vectored endophytic fungi establish an everlasting association with seeds and travel from generation to generation. To explore the composition and diversity of endophytic fungi in Alpinia zerumbet seeds, high-throughput Illumina MiSeq sequencing was employed for the following stages: fruit formation period (YSJ1), young fruit period (YSJ2), early mature period (YSJ3), middle mature period (YSJ4), and late mature period (YSJ5). A total of 906,694 sequence reads and 745 operational taxonomic units (OTUs) were obtained and further classified into 8 phyla, 30 classes, 73 orders, 163 families, 302 genera, and 449 species. The highest endophytic fungal diversity was observed at YSJ5. The genera with the highest abundance were Cladosporium, Kodamaea, Hannaella, Mycothermus, Gibberella, Sarocladium, and Neopestalotiopsis. Functional Guild (FUNGuild) analysis revealed that endophytic fungi were undefined saprotroph, plant pathogens, animal pathogen–endophyte–lichen parasite–plant pathogen–wood saprotroph, and soil saprotrophs. Alternaria, Fusarium, Cladosporium, and Sarocladium, which are potential probiotics and can be used as biocontrol agents, were also abundant. This study is part of the Sustainable Development Goals of United Nations Organization (UNO) to “Establish Good Health and Well-Being.”
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Zihao Pei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Yu Zheng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lian Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yang Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Qin Wei,
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Ahmed H. El-Sappah,
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- *Correspondence: Manzar Abbas,
| |
Collapse
|