1
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Wan M, Minelli ME, Zhao Q, Marshall S, Yu H, Smolka M, Mao Y. Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition. Nat Commun 2024; 15:7481. [PMID: 39214972 PMCID: PMC11364841 DOI: 10.1038/s41467-024-51273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. Here, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on phosphoribosyl-Ub conjugated to host targets by Sde. Remarkably, Ub moieties within poly-Ub chains are either modified with a phosphoribosyl group by PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated phosphoribosyl-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors and therefore exclude host autophagy adaptors from the LCV. In this work, we shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.
Collapse
Affiliation(s)
- Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marena E Minelli
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Qiuye Zhao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Marcus Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Bontemps Z, Paranjape K, Guy L. Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. FEMS Microbiol Rev 2024; 48:fuae021. [PMID: 39081075 PMCID: PMC11338181 DOI: 10.1093/femsre/fuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.
Collapse
Affiliation(s)
- Zélia Bontemps
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
4
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
5
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
6
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
7
|
Functional Characterization of Non-Ankyrin Repeat Domains of Orientia tsutsugamushi Ank Effectors Reveals Their Importance for Molecular Pathogenesis. Infect Immun 2022; 90:e0062821. [PMID: 35435726 DOI: 10.1128/iai.00628-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is a genetically intractable obligate intracellular bacterium, causes scrub typhus, and has one of the largest known armamentariums of ankyrin repeat-containing effectors (Anks). Most have a C-terminal F-box presumed to interact with the SCF ubiquitin ligase complex primarily based on their ability to bind overexpressed Skp1. Whether all F-box-containing Anks bind endogenous SCF components and the F-box residues essential for such interactions has gone unexplored. Many O. tsutsugamushi Ank F-boxes occur as part of a PRANC (pox protein repeats of ankyrin-C-terminal) domain. Roles of the non-F-box portion of the PRANC and intervening sequence region (ISR) that links the ankyrin repeat and F-box/PRANC domains are unknown. The functional relevance of these effectors' non-ankyrin repeat domains was investigated. The F-box was necessary for Flag-tagged versions of most F-box-containing Anks to precipitate endogenous Skp1, Cul1, and/or Rbx1, while the ISR and PRANC were dispensable. Ank toxicity in yeast was predominantly F-box dependent. Interrogations of Ank1, Ank5, and Ank6 established that L1, P2, E4, I9, and D17 of the F-box consensus are key for binding native SCF components and for Ank1 and Ank6 to inhibit NF-κB. The ISR is also essential for Ank1 and Ank6 to impair NF-κB. Ectopically expressed Ank1 and Ank6 lacking the ISR or having a mutagenized F-box incapable of binding SCF components performed as dominant-negative inhibitors to block O. tsutsugamushi NF-κB modulation. This study advances knowledge of O. tsutsugamushi Ank functional domains and offers an approach for validating their roles in infection.
Collapse
|
8
|
Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:6529235. [DOI: 10.1093/femsre/fuac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.
Collapse
Affiliation(s)
- Jessica E Martyn
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| |
Collapse
|
9
|
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022; 12:255. [PMID: 35204756 PMCID: PMC8961657 DOI: 10.3390/biom12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Laboratory of Molecular Pathogenesis, Gamaleya Research Centre, 123098 Moscow, Russia
| | | | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
11
|
Schroeder GN, Pearson JS, Thurston TLM. Editorial: Bacterial Effectors as Drivers of Human Disease: Models, Methods, Mechanisms. Front Cell Infect Microbiol 2021; 11:708228. [PMID: 34307200 PMCID: PMC8296907 DOI: 10.3389/fcimb.2021.708228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, VIC, Australia
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|