1
|
Yang E, Ding Q, Fan X, Ye H, Xuan C, Zhao S, Ji Q, Yu W, Liu Y, Cao J, Fang M, Ding X. Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma. Comput Biol Med 2023; 162:107089. [PMID: 37267825 DOI: 10.1016/j.compbiomed.2023.107089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
Collapse
Affiliation(s)
- Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| | - Xiaowei Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Haihan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Weihua Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.
| | - Yongfu Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
2
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Sharma M, Bhat R, Usmani Z, McClements DJ, Shukla P, Raghavendra VB, Gupta VK. Bio-Based Formulations for Sustainable Applications in Agri-Food-Pharma. Biomolecules 2021; 11:biom11050768. [PMID: 34065609 PMCID: PMC8160999 DOI: 10.3390/biom11050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Minaxi Sharma
- Food (By-) Products Valorisation Technologies (VALORTECH) ERA Chair, Estonian University of Life Sciences, 51006 Tartu, Estonia or (M.S.); or (R.B.)
| | - Rajeev Bhat
- Food (By-) Products Valorisation Technologies (VALORTECH) ERA Chair, Estonian University of Life Sciences, 51006 Tartu, Estonia or (M.S.); or (R.B.)
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India;
| | | | - Pratyoosh Shukla
- Institute of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India;
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinay B. Raghavendra
- P.G. Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- Correspondence: or ; Tel.: +44-1387242920
| |
Collapse
|
4
|
Gam DH, Hong JW, Kim JH, Kim JW. Skin-Whitening and Anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction. Molecules 2021; 26:molecules26051231. [PMID: 33669031 PMCID: PMC7956768 DOI: 10.3390/molecules26051231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.
Collapse
Affiliation(s)
- Da Hye Gam
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Ji Woo Hong
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Jun Hee Kim
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Jin Woo Kim
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
- FlexPro Biotechnology, Natural Science 128, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea
- Center for Next-Generation Semiconductor Technology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea
- Correspondence: ; Tel.: +82-41-530-2226
| |
Collapse
|