1
|
Zhao LX, Ren H, Su JY, Zhang Q, He DL, Wu TY, Zhang YH, Wang ZY, Fan YG. Osmundacetone ameliorates Alzheimer's-like pathologies by inhibiting β-amyloid fibrillation, oxidative damage and neuroinflammation in APP/PS1 transgenic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156091. [PMID: 39332101 DOI: 10.1016/j.phymed.2024.156091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND β-Amyloid (Aβ) fibrillation is critical for Aβ deposition and cytotoxicity during the progression of Alzheimer's disease (AD). Consequently, anti-Aβ monoclonal antibody drugs targeting Aβ oligomers and aggregation are considered potential therapeutic strategies for AD treatment. Similar to the working mechanisms of anti-Aβ monoclonal antibody drugs, our study identified osmundacetone (OAC), a small-molecule compound isolated from the traditional Chinese medicine Rhizoma Osmundae, as exerting anti-AD effects by targeting Aβ. PURPOSE This study sought to determine whether OAC influences the Aβ burden in APP/PS1 mice and to identify potential regulatory mechanisms. METHODS Five-month-old APP/PS1 mice were injected intraperitoneally with OAC at a dose of 1 mg/kg for 12 weeks. The cognitive functions of the mice were assessed via the Morris water maze test and the open field test. Osmundacetone was analyzed via molecular docking, an isothermal dose‒response fingerprint-cellular context thermal shift assay, a thioflavine T fluorescence assay, and an atomic force microscopy assay to analyze the effects of OAC on Aβ fibrillation. Immunofluorescence, immunoblotting, and immunohistochemistry were used to assess Aβ clearance, AD pathology, oxidative stress, and inflammatory responses. RESULTS The innovative biochemical and physical data illustrated that the ability of OAC to inhibit Aβ fibrillation was accomplished by binding directly to Aβ, which differed from the majority of previously reported natural polyphenols that modulate the Aβ content and structure in an indirect manner. The inhibition of Aβ fibrosis by OAC subsequently promoted Aβ lysosomal degradation, resulting in a decreased Aβ burden in APP/PS1 mice. Furthermore, OAC treatment inhibited oxidative damage by upregulating glutathione peroxidase expression and attenuated the production of inflammatory factors by downregulating nuclear factor-kB phosphorylation in APP/PS1 mice. CONCLUSION These findings demonstrate, for the first time, that OAC could reduce the brain Aβ burden in APP/PS1 mice by inhibiting Aβ fibrillation through direct binding to Aβ and improve cognitive dysfunction by attenuating oxidative damage and neuroinflammation. These findings indicate that OAC may be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Jing-Yang Su
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Da-Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yan-Hui Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Yang F, Li X, Long J, Gao Q, Pan M, Wang J, Zhang Y. Therapeutic efficacy and pharmacological mechanism of Yindan Xinnaotong soft capsule on acute ischemic stroke: a meta-analysis and network pharmacology analysis. Metab Brain Dis 2024; 39:523-543. [PMID: 38157100 DOI: 10.1007/s11011-023-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Yindan Xinnaotong soft capsule (YDXNT), a traditional Chinese medicine preparation, has shown a promising effect in the treatment of acute ischemic stroke (AIS). The goal of this study was to investigate the therapeutic effects and pharmacological mechanisms of YDXNT on AIS. Randomized controlled trials were searched and screened. Review Manager 5.4 was used for a meta-analysis. Active ingredients and targets of YDXNT were extracted from the Traditional Chinese Medicine Systems Pharmacology Database, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Encyclopaedia of Traditional Chinese Medicine. AIS-related targets were retrieved from GeneCards, OMIM, and DrugBank databases. We constructed PPI and ingredient-target networks, performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and conducted molecular docking. The YDXNT group had a higher total effective rate and a higher Barthel Index score. YDXNT reduced the low-density lipoprotein cholesterol and the whole blood viscosity at high and shear rates. Our study identified 313 ingredients and 1196 common targets. The key ingredients were mainly quercetin, neocryptotanshinone II, miltionone I, neotanshinone C, and tanshiquinone B, and the key targets were mainly SRC, MAPK3, AKT1, MAPK1, and JUN. GO analysis showed that the core targets mainly involved in atherosclerosis and neural apoptosis. The core pathways were lipid and atherosclerosis, PI3K-Akt, MAPK, and other pathways. Key ingredients exhibited robust binding interactions with core targets. YDXNT could effectively improve the total effective rate, ability of daily life, blood lipids, and blood viscosity. Antiatherosclerotic and neuroprotective effects are the main pharmacological mechanisms.Registration number: CRD42023400127.
Collapse
Affiliation(s)
- Fangjie Yang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junzi Long
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Qian Gao
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Mengyang Pan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Jing Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Yasu Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
3
|
Sun H, Wei S, Gong Y, Ding K, Tang S, Sun W, Yuan C, Huang L, Liu Z, Chen C, Yao L. Neuroprotective effects of cordycepin inhibit glutamate-induced apoptosis in hippocampal neurons. Cell Stress Chaperones 2024; 29:10-20. [PMID: 38219840 PMCID: PMC10939076 DOI: 10.1016/j.cstres.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Glutamate is a neurotransmitter that can cause excitatory neurotoxicity when its extracellular concentration is too high, leading to disrupted calcium balance and increased production of reactive oxygen species (ROS). Cordycepin, a nucleoside adenosine derivative, has been shown to protect against excitatory neurotoxicity induced by glutamate. To investigate its potential neuroprotective effects, the present study employed fluorescence detection and spectrophotometry techniques to analyze primary hippocampal-cultured neurons. The results showed that glutamate toxicity reduced hippocampal neuron viability, increased ROS production, and increased intracellular calcium levels. Additionally, glutamate-induced cytotoxicity activated acetylcholinesterase and decreased glutathione levels. However, cordycepin inhibited glutamate-induced cell death, improved cell viability, reduced ROS production, and lowered Ca2+ levels. It also inhibited acetylcholinesterase activation and increased glutathione levels. This study suggests that cordycepin can protect against glutamate-induced neuronal injury in cell models, and this effect was inhibited by adenosine A1 receptor blockers, indicating that its neuroprotective effect is achieved through activation of the adenosine A1 receptor.
Collapse
Affiliation(s)
- Huizhen Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; Shan County Renmin Road Primary School, Heze, Shandong,PR China
| | - Shanshan Wei
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Yanchun Gong
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Kaizhi Ding
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Shan Tang
- School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Wei Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chunhua Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Zhibing Liu
- School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chong Chen
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Lihua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China; School of Physical Education and Health, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
4
|
Li B, Yu W, Yang L. Osmundacetone Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Biol Pharm Bull 2023; 46:1527-1534. [PMID: 37673653 DOI: 10.1248/bpb.b23-00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Osmundacetone (DHBAc) is an antioxidant compound that has been shown to have neuroprotective and immunomodulatory activities. However, few studies have estimated its effect on cerebral ischemia-reperfusion (I/R) injury. In this study, we investigated the protective effect of DHBAc on the brain tissue of rats with cerebral I/R injury. Rats were respectively given nimodipine (NI), low dose (L-DHBAc) and high dose (H-DHBAc) Osmundacetone, and they were killed under anesthesia after 24 h of reperfusion. And neurological impairment scores, cerebral infarct size and cerebral pathological changes were respectively detected, and mRNA expression of recombinant kelch like ECH associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), protein expression levels of caspase 3, cleaved caspase 3, heme oxygenase-1 (HO-1) and quinone oxidoreductase1 (NQO1) in ischemic brain tissue were measured. Compared with the I/R group, neurological impairment scores of the DHBAc groups were significantly decreased, and their infarct sizes were significantly smaller. DHBAc could improve the pathological status of brain tissue with cerebral I/R injury, including reducing number of inflammatory cells and area of vacuoles and restoring number of normal neurons. Expression levels of Keap1 mRNA and proteins of cleaved caspase3 were significantly decreased in the DHBAc groups than those of the I/R group, while expression levels of Nrf2 mRNA, HO-1 and NQO1 proteins were remarkably increased. The effect of H-DHBAc was similar to those of NI. These results suggest that DHBAc could mitigate damage to brain tissue in rats with cerebral I/R injury.
Collapse
Affiliation(s)
- Bowen Li
- Hebei University of Chinese Medicine
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease
| | - Wentao Yu
- Hebei University of Chinese Medicine
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease
| | - Lan Yang
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| |
Collapse
|
5
|
Song J, Chen M, Meng F, Chen J, Wang Z, Zhang Y, Cui J, Wang J, Shi D. Studies on the interaction mechanism between xanthine oxidase and osmundacetone: Molecular docking, multi-spectroscopy and dynamical simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122861. [PMID: 37209475 DOI: 10.1016/j.saa.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Xanthine oxidase (XO) is a key enzyme in uric acid production, and its molybdopterin (Mo-Pt) domain is an important catalytic center when xanthine and hypoxanthine are oxidated. It is found that the extract of Inonotus obliquus has an inhibitory effect on XO. In this study, five key chemical compounds were initially identified using liquid chromatography-mass spectrometry (LC-MS), and two compounds, osmundacetone ((3E)-4-(3,4-dihydroxyphenyl)-3-buten-2-one) and protocatechuic aldehyde (3,4-dihydroxybenzaldehyde), were screened as the XO inhibitors by ultrafiltration technology. Osmundacetone bound XO strongly and competitively inhibited XO with a half-maximal inhibitory concentration of 129.08 ± 1.71 μM, and its inhibition mechanism, was investigated. Osmundacetone and XO via static quenching and spontaneously bound with XO with high affinity, primarily via hydrophobic interactions and hydrogen bonds. Molecular docking studies showed that osmundacetone was inserted into the Mo-Pt center and interacted with hydrophobic residues of Phe911, Gly913, Phe914, Ser1008, Phe1009, Thr1010, Val1011, and Ala1079 of XO. In summary, these findings suggest that provide theoretical basis for the research and development of XO inhibitors from Inonotus obliquus.
Collapse
Affiliation(s)
- Jiling Song
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Minghui Chen
- The College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Fanlei Meng
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jiahui Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhanwei Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Zhang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; Nanguan Middle School, Honghua Gang District, Zunyi 563000, China
| | - Jing Cui
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| | - Jing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China.
| | - Dongfang Shi
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
6
|
Elsholtzia ciliata (Thunb.) Hyland: A Review of Phytochemistry and Pharmacology. Molecules 2022; 27:molecules27196411. [PMID: 36234947 PMCID: PMC9572931 DOI: 10.3390/molecules27196411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, the confusion of the sources of medicinal materials was briefly expounded, and the differences among the varieties were pointed out. At the same time, the chemical components and pharmacological properties of Elsholtzia ciliata (Thunb.) Hyland (E. ciliata) were reviewed. The structures of 352 compounds that have been identified are listed. These mainly include flavonoids, terpenoids, phenylpropanoids, alkaloids, and other chemical components. They have antioxidant, anti-inflammatory, antimicrobial, insecticidal, antiviral, hypolipidemic, hypoglycemic, analgesic, antiarrhythmic, antitumor, antiacetylcholinesterase, and immunoregulator activities. At present, there are many researches using essential oil and alcohol extract, and the researches on antioxidant, anti-inflammatory, anti-microbial, and other pharmacological activities are relatively mature. This paper aims to summarize the existing research, update the research progress regarding the phytochemicals and pharmacology of E. ciliate, and to provide convenience for subsequent research.
Collapse
|
7
|
Yan X, Chen X, Fu C, Jing C, Zhao D, Sun L. Ginseng oligosaccharides protect neurons from glutamate-induced oxidative damage through the Nrf2/HO-1 signaling pathway. Food Funct 2022; 13:8605-8615. [PMID: 35894549 DOI: 10.1039/d2fo01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of ginseng oligosaccharides (GSOs) on neuronal oxidative injury induced by glutamate (GLU) and the molecular mechanisms involved were investigated. Cell damage was assessed using MTT assays, and the lactate dehydrogenase (LDH) release rate and flow cytometry were used to detect the accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential respectively. The levels of catalase (CAT) and glutathione (GSH) were measured in PC12 cells and Drosophila brain tissue. The climbing ability of Drosophila was observed. Levels of proteins, including Cyt C, Bcl-2/BAX, and Nrf2/HO-1-associated proteins, were determined by western blotting and immunofluorescence. It was found that GSOs reversed GLU-induced reductions in cell viability and the LDH release rate, and rescued ROS accumulation. GSOs also mitigated the deleterious effects of GLU on the mitochondrial membrane potential and Cyt C release, thus alleviating mitochondrial dysfunction, and increased GSH levels and CAT activity in both cells and Drosophila brain tissue. The climbing index in GSO-treated Drosophila was significantly higher than that in the tert-butyl-hydroperoxide-treated flies. Furthermore, GSOs protected cells against GLU-induced apoptosis by reducing the expression of the mitochondrial apoptosis-associated Bcl-2 family effector proteins and protected cells from GLU-induced oxidative damage by increasing the nuclear translocation of Nrf2 and HO-1 expression. These findings indicate that GSOs protect against GLU-induced neuronal oxidative damage through Nrf2/HO-1 activation.
Collapse
Affiliation(s)
- Xiuci Yan
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Chunge Fu
- Changchun Maternal and Child Health Care Center, Changchun, 1287 Dama Road, Changchun, Jilin Province 130021, PR China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China. .,Jilin Provincial Science and Technology Innovation Cross-Regional Cooperation Center of Traditional Chinese Medicine Health Product Research and Development, PR China
| |
Collapse
|
8
|
Guo P, Liu L, Yang X, Li M, Zhao Q, Wu H. Irisin improves BBB dysfunction in SAP rats by inhibiting MMP-9 via the ERK/NF-κB signaling pathway. Cell Signal 2022; 93:110300. [DOI: 10.1016/j.cellsig.2022.110300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
|
9
|
Wu H, Cao Y, Wang J, Liu R, Sun Y, Zhang C, Sun Y. Pharmacokinetic and metabolic profiling studies of osmundacetone in rats by UPLC-MS/MS and UPLC-QE-Orbitrap-HRMS. Biomed Chromatogr 2021; 36:e5251. [PMID: 34606105 DOI: 10.1002/bmc.5251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Osmundacetone is a potential medicinal substance existing in ferns and has excellent antioxidant effects. This research aims to obtain the pharmacokinetic data for and metabolite products of osmundacetone. An UPLC-MS/MS quantitative method was established for the measurement of osmundacetonein in rat plasma over a linear range of 6.72-860.00 ng/ml. The signal to noise ratio of the lower limit of quantification was 60:1, the precision was <9.74% and the method had good selectivity and stability. The established method was successfully applied to the pharmacokinetic study of osmundacetone for the first time. Osmundacetone reached a peak at 0.25 h with a maximum value of 3283.33 μg/L. The apparent volume of distribution not multiplied by the bioavailability was 127.96 L/kg, and the half-life of osmundacetone was 5.20 h. At the same time, an UPLC-QE-Orbitrap-HRMS method was established to identify metabolites in plasma, urine and feces for the first time. A total of 30 metabolites were identified and the metabolic profile of osmundacetone was defined. In general, we have established a mass spectrometry quantitative method for osmundacetone for the first time and characterized its metabolic characteristics in rats.
Collapse
Affiliation(s)
- Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yijia Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Clinic Medical Center, Department of Pharmacy, Dazhou Central Hospital, Dazhou, China
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Garádi Z, Dékány M, Móricz ÁM, Gaál A, Papp V, Béni S, Ványolós A. Antimicrobial, Antioxidant and Antiproliferative Secondary Metabolites from Inonotus nidus-pici. Molecules 2021; 26:5453. [PMID: 34576923 PMCID: PMC8468361 DOI: 10.3390/molecules26185453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Inonotus nidus-pici is a sterile conk which produces macrofungus, a neglected Central-Eastern European relative of the prized Inonotus obliquus, also known as chaga. Investigation of the methanol extract of the poroid fungus I. nidus-pici resulted in the isolation of citropremide (1), 3,4-dihydroxybenzalacetone (2) , lanosterol (3), ergost-6,8,22-trien-3β-ol (4), and ergosterol peroxide (5). The structures of fungal compounds were determined on the basis of one- and two-dimensional NMR and MS spectroscopic analysis. Compounds 1-2 and 4-5 were evaluated for their antioxidant and antimicrobial properties against several bacterial and fungal strains. 3,4-dihydroxybenzalacetone (2) and ergost-6,8,22-trien-3β-ol (4) demonstrated moderate antimicrobial activity, while the former possessed notable antioxidant activity in DPPH assay. The antiproliferative examinations performed on three human cancer (MES-SA, MES-SA/Dx5, A431) cell lines demonstrated that compounds 4 and 5 have notable cytotoxic activity with IC values in micromolar range. The current study represents the first report on the chemical profile of I. nidus-pici, providing a comprehensive study on the isolation and structure determination of bioactive secondary metabolites of this macrofungus.
Collapse
Affiliation(s)
- Zsófia Garádi
- Department of Pharmacognosy, Semmelweis University, Üllői út. 26, H-1085 Budapest, Hungary; (Z.G.); (S.B.)
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc, P.O. Box 100, H-1475 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary;
| | - Ágnes M. Móricz
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman Ottó út 15, H-1022 Budapest, Hungary;
| | - Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Üllői út. 26, H-1085 Budapest, Hungary; (Z.G.); (S.B.)
| | - Attila Ványolós
- Department of Pharmacognosy, Semmelweis University, Üllői út. 26, H-1085 Budapest, Hungary; (Z.G.); (S.B.)
| |
Collapse
|
11
|
Zhao Y, Li X, Chu J, Shao Y, Sun Y, Zhang Y, Liu Z. Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation in vitro and vivo. Food Funct 2021; 12:7448-7468. [PMID: 34195738 DOI: 10.1039/d1fo01421h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The incidence of allergic diseases has increased to such a point that they have become common and have reached epidemic levels. However, their pathogenesis is not fully understood. Paeoniae Radix Rubra is a traditional Chinese medicine that is also used as a dietary supplement. Its main active ingredient is paeoniflorin. Paeoniflorin has good anti-inflammatory, immunomodulation, and antitumor effects. It is utilized in the treatment of various diseases in clinical settings. However, its effects on type I allergies and pseudoallergic reactions have not been comprehensively studied. In this study, we aimed to use DNP-IgE/DNP-BSA and C48/80 to simulate type I allergies and pseudoallergic reactions to evaluate the therapeutic effects of paeoniflorin to these diseases and identify its molecular mechanisms in cell degranulation both in vivo and in vitro. Results showed that paeoniflorin inhibited the degranulation of RBL-2H3 cells induced by these two stimuli (IgE-dependent and IgE-independent stimuli) in a dose-dependent manner. Moreover, qPCR and western blot analyses indicated that paeoniflorin may regulate the IgE/FcεR I, MRGPRB3, and downstream signal transduction pathways to exert its therapeutic effects on type I allergies and pseudoallergic reactions. In addition, DNP-IgE/DNP-BSA and compound 48/80 were used to induce the establishment of a passive cutaneous anaphylaxis mouse model. Paeoniflorin was found to suppress the extravasation of Evans Blue and tissue edema in the ears, back skin, and paws of the mice. This result further confirmed that paeoniflorin has a notable therapeutic effect on type I allergies and pseudoallergic reactions. Therefore, paeoniflorin could potentially be used as a drug for the treatment of type I allergies and pseudoallergic reactions. This study provides new insights into expanding the treatment range of paeoniflorin and its pharmacological mechanism.
Collapse
Affiliation(s)
- Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | | | | | | | | | | | | |
Collapse
|