1
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Thang M, Mellows C, Kass LE, Daglish S, Fennell EM, Mann BE, Mercer-Smith AR, Valdivia A, Graves LM, Hingtgen SD. Combining the constitutive TRAIL-secreting induced neural stem cell therapy with the novel anti-cancer drug TR-107 in glioblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200834. [PMID: 39045029 PMCID: PMC11263637 DOI: 10.1016/j.omton.2024.200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/27/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Sabrina Daglish
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Emily M.J. Fennell
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Breanna E. Mann
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alison R. Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shawn D. Hingtgen
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Yeh PS, Liu CT, Yu CY, Chang YC, Lin SY, Li YC, Luan YZ, Sung WW. Crebanine, an aporphine alkaloid, induces cancer cell apoptosis through PI3K-Akt pathway in glioblastoma multiforme. Front Pharmacol 2024; 15:1419044. [PMID: 38895635 PMCID: PMC11184677 DOI: 10.3389/fphar.2024.1419044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.
Collapse
Affiliation(s)
- Poh-Shiow Yeh
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Yu Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Chen Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Song M, Wang T, Liu T, Lei T, Teng X, Peng Q, Zhu Q, Chen F, Zhao G, Li K, Qi L. DMC-siERCC2 hybrid nanoparticle enhances TRAIL sensitivity by inducing cell cycle arrest for glioblastoma treatment. Biomed Pharmacother 2024; 174:116470. [PMID: 38565061 DOI: 10.1016/j.biopha.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.
Collapse
Affiliation(s)
- Meihui Song
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Technology School of Medicine, The South China University, Guangzhou, Guangdong 510000, China
| | - Tengfei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Tao Liu
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Ting Lei
- School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Xu Teng
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Qian Peng
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Qihui Zhu
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Feng Chen
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China; School of Pharmaceutical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin, Jilin 130013, China
| | - Kaishu Li
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People's Hospital, the Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| |
Collapse
|
6
|
Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R, Almalki WH, Kazmi I, Alzarea SI, Prasher P, Singh SK, Dua K. Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract 2024; 254:155121. [PMID: 38262269 DOI: 10.1016/j.prp.2024.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
8
|
Kuo YC, Yen MH, De S, Rajesh R, Tai CK. Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme. BIOMATERIALS ADVANCES 2023; 154:213639. [PMID: 37793310 DOI: 10.1016/j.bioadv.2023.213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. 1H nuclear magnetic resonance spectra showed that the hydrogen bonds between the LPs and drugs supported the sustained release of AZD, DGC and CURC from the LPs. The LPs modified with the three targeting biomolecules facilitated the penetration of AZD, GDC and CURC across the BBB, and could recognize U87MG cells and human brain cancer stem cells. Immunofluorescence staining, flow cytometry and western blot demonstrated that CURC-incorporated LPs enhanced AZD and GDC activity in suppressing cellular IAP 1 (cIAP1) and X-linked IAP (XIAP) levels, and raising caspase-3 level in GBM. Surface FA, Lf and RVG also promoted the ability of the drug-loaded LPs to avoid carcinoma growth. The current FA-, Lf- and RVG-crosslinked LPs carrying AZD, DGC and CURC can be promising in hindering IAP expressions for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Meng-Hui Yen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
9
|
Menevse AN, Ammer LM, Vollmann-Zwerenz A, Kupczyk M, Lorenz J, Weidner L, Hussein A, Sax J, Mühlbauer J, Heuschneider N, Rohrmus C, Mai LS, Jachnik B, Stamova S, Volpin V, Durst FC, Sorrentino A, Xydia M, Milenkovic VM, Bader S, Braun FK, Wetzel C, Albert NL, Tonn JC, Bartenstein P, Proescholdt M, Schmidt NO, Linker RA, Riemenschneider MJ, Beckhove P, Hau P. TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma. Acta Neuropathol Commun 2023; 11:75. [PMID: 37158962 PMCID: PMC10165826 DOI: 10.1186/s40478-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/10/2023] Open
Abstract
Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.
Collapse
Affiliation(s)
- Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Marcell Kupczyk
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Lorraine Weidner
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Jasmin Mühlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Celine Rohrmus
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Laura S Mai
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Birgit Jachnik
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Franziska C Durst
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Frank K Braun
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Martin Proescholdt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany.
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- LIT - Leibniz Institute for Immunotherapy (former RCI), c/o Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany.
- Department of Neurology -NeuroOncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
10
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
11
|
Thang M, Mellows C, Mercer-Smith A, Nguyen P, Hingtgen S. Current approaches in enhancing TRAIL therapies in glioblastoma. Neurooncol Adv 2023; 5:vdad047. [PMID: 37215952 PMCID: PMC10195206 DOI: 10.1093/noajnl/vdad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive, primary brain cancer in adults and continues to pose major medical challenges due in part to its high rate of recurrence. Extensive research is underway to discover new therapies that target GBM cells and prevent the inevitable recurrence in patients. The pro-apoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted attention as an ideal anticancer agent due to its ability to selectively kill cancer cells with minimal toxicity in normal cells. Although initial clinical evaluations of TRAIL therapies in several cancers were promising, later stages of clinical trial results indicated that TRAIL and TRAIL-based therapies failed to demonstrate robust efficacies due to poor pharmacokinetics, resulting in insufficient concentrations of TRAIL at the therapeutic site. However, recent studies have developed novel ways to prolong TRAIL bioavailability at the tumor site and efficiently deliver TRAIL and TRAIL-based therapies using cellular and nanoparticle vehicles as drug loading cargos. Additionally, novel techniques have been developed to address monotherapy resistance, including modulating biomarkers associated with TRAIL resistance in GBM cells. This review highlights the promising work to overcome the challenges of TRAIL-based therapies with the aim to facilitate improved TRAIL efficacy against GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Alison Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Phuong Nguyen
- Michigan State University School of Medicine, East Lansing, Michigan, USA
| | - Shawn Hingtgen
- Corresponding Author: Shawn Hingtgen, PhD, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599-7363, USA ()
| |
Collapse
|
12
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
13
|
Amadasu E, Panther E, Lucke-Wold B. Characterization and Treatment of Spinal Tumors. INTENSIVE CARE RESEARCH 2022; 2:76-95. [PMID: 36741203 PMCID: PMC9893847 DOI: 10.1007/s44231-022-00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
The prevalence of spinal tumors is rare in comparison to brain tumors which encompass most central nervous system tumors. Tumors of the spine can be divided into primary and metastatic tumors with the latter being the most common presentation. Primary tumors are subdivided based on their location on the spinal column and in the spinal cord into intramedullary, intradural extramedullary, and primary bone tumors. Back pain is a common presentation in spine cancer patients; however, other radicular pain may be present. Magnetic resonance imaging (MRI) is the imaging modality of choice for intradural extramedullary and intramedullary tumors. Plain radiographs are used in the initial diagnosis of primary bone tumors while Computed tomography (CT) and MRI may often be necessary for further characterization. Complete surgical resection is the treatment of choice for spinal tumors and may be curative for well circumscribed lesions. However, intralesional resection along with adjuvant radiation and chemotherapy can be indicated for patients that would experience increased morbidity from damage to nearby neurological structures caused by resection with wide margins. Even with the current treatment options, the prognosis for aggressive spinal cancer remains poor. Advances in novel treatments including molecular targeting, immunotherapy and stem cell therapy provide the potential for greater control of malignant and metastatic tumors of the spine.
Collapse
Affiliation(s)
- Efosa Amadasu
- School of Medicine, University of South Florida, Tampa, USA
| | - Eric Panther
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | |
Collapse
|
14
|
Yagolovich AV, Isakova AA, Artykov AA, Vorontsova YV, Mazur DV, Antipova NV, Pavlyukov MS, Shakhparonov MI, Gileva AM, Markvicheva EA, Plotnikova EA, Pankratov AA, Kirpichnikov MP, Gasparian ME, Dolgikh DA. DR5-Selective TRAIL Variant DR5-B Functionalized with Tumor-Penetrating iRGD Peptide for Enhanced Antitumor Activity against Glioblastoma. Int J Mol Sci 2022; 23:12687. [PMID: 36293545 PMCID: PMC9604365 DOI: 10.3390/ijms232012687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvβ3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anne V. Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
- Manebio LLC, 115280 Moscow, Russia
| | - Alina A. Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Artem A. Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Manebio LLC, 115280 Moscow, Russia
| | | | - Diana V. Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Nadezhda V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Marat S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Anastasia M. Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Elena A. Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ekaterina A. Plotnikova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, 125284 Moscow, Russia
| | - Andrey A. Pankratov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, 125284 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine E. Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
15
|
Cui H, Hu Z, Yang K, Huang J, Wu Y, Chen Q, Wei R, Wang P, Wang H, Li H, Chen Y, Lu T, Yao Y, Zhu Y. Design and synthesis of highly TRAIL expression HDAC inhibitors based on ONC201 to promote apoptosis of colorectal cancer. Eur J Med Chem 2022; 238:114484. [DOI: 10.1016/j.ejmech.2022.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
|
16
|
Induction of DR5-Dependent Apoptosis by PGA 2 through ATF4-CHOP Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123804. [PMID: 35744931 PMCID: PMC9230093 DOI: 10.3390/molecules27123804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023]
Abstract
Prostaglandin (PG) A2, a cyclopentenone PG, induced apoptosis in both HCT116 and HCT116 p53 -/- cells. Although PGA2-induced apoptosis in HCT116 cells was dependent on the p53-DR5 pathway, the mechanism underlying PGA2-induced apoptosis in HCT116 p53 -/- cells remains unknown. In this study, we observed that PGA2 caused an increase of mRNA expression of DR5 and protein expression even in HCT116 p53 -/- cells, accompanied by caspase-dependent apoptosis. Knockdown of DR5 expression by RNA interference inhibited PGA2-induced apoptosis in HCT116 p53 -/- cells. Parallel to the induction of apoptosis, PGA2 treatment upregulated expression of genes upstream of DR5 such as ATF4 and CHOP. Knockdown of CHOP prevented DR5-dependent cell death as well as the expression of DR5 protein. Furthermore, knockdown of ATF4 by RNA interference decreased both mRNA and protein levels of CHOP and DR5, thereby suppressing PGA2-induced cell death. Consistently, the DR5 promoter activity increased by PGA2 was not stimulated when the CHOP binding site in the DR5 promoter was mutated. These results collectively suggest that PGA2 may induce DR5-dependent apoptosis via the ATF4-CHOP pathway in HCT116 p53 null cells.
Collapse
|
17
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
18
|
Mukherjee S, Pillai PP. Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj 2022; 1866:130065. [PMID: 34902452 DOI: 10.1016/j.bbagen.2021.130065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. SCOPE OF THE REVIEW In the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. MAJOR CONCLUSIONS EVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. GENERAL SIGNIFICANCE Attempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
19
|
Li F, Wang X, Wu M, Guan J, Liang Y, Liu X, Lin X, Liu J. Biosynthetic cell membrane vesicles to enhance TRAIL-mediated apoptosis driven by photo-triggered oxidative stress. Biomater Sci 2022; 10:3547-3558. [PMID: 35616096 DOI: 10.1039/d2bm00599a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the tumor-specificity and limited side effects, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows great potential in cancer treatments. However, the short half-life of TRAIL protein and the poor...
Collapse
Affiliation(s)
- Feida Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuzhi Liang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
| |
Collapse
|
20
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
21
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|