1
|
An H, Li G, Yang Z, Xiong M, Wang N, Cao X, Yu A. Denovo Production of Resveratrol by Engineered Rice Wine Strain Saccharomyces cerevisiae HJ08 and Its Application in Rice Wine Brewing. J Fungi (Basel) 2024; 10:513. [PMID: 39194839 DOI: 10.3390/jof10080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Resveratrol is a plant-derived polyphenolic compound with numerous biological activities and health-promoting properties. Rice wine is a popular traditional alcoholic beverage made from fermented rice grains, and widely consumed in Asia. To develop resveratrol-enriched rice wine, a heterologous resveratrol biosynthesis pathway was established by integrating the 4-coumaroyl-CoA ligase (Pc4CL) and the stilbene synthase (VvSTS) from Petroselinum crispum and Vitis vinifera at the δ locus sites of industrial rice wine strains Saccharomyces cerevisiae HJ. The resulting S. cerevisiae HJ01 produced a level of 0.6 ± 0.01 mg/L resveratrol. Next, the resveratrol production was increased 16.25-fold through employing the fused protein Pc4CL::VvSTS with a rigidly linked peptide (TPTP, EAAAK). Then, the strains were further modified by removing feedback inhibition of tyrosine through point mutation of ARO4 and ARO7, which integrated at the rDNA region of strain HJ03, and generated strain HJ06, HJ07, and HJ08. Subsequently, the highest resveratrol titer (34.22 ± 3.62 mg/L) was obtained by optimizing fermentation time and precursor addition amount. Finally, resveratrol content of rice wine fermented with strain HJ08 was 2.04 ± 0.08 mg/L and 1.45 ± 0.06 mg/L with or without the addition of 400 mg/L tyrosine after 7 days fermentation.
Collapse
Affiliation(s)
- Huihui An
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guangpeng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhihan Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Na Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xitao Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, China
| |
Collapse
|
2
|
Ibrahim GG, Perera M, Abdulmalek SA, Yan J, Yan Y. De Novo Synthesis of Resveratrol from Sucrose by Metabolically Engineered Yarrowia lipolytica. Biomolecules 2024; 14:712. [PMID: 38927115 PMCID: PMC11201955 DOI: 10.3390/biom14060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.
Collapse
Affiliation(s)
- Gehad G. Ibrahim
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig 7120001, Egypt
| | - Madhavi Perera
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
- Department of Electrical, Electronic and Telecommunication, Faculty of Engineering, General Sir John Kotelawala Defence University, Rathmalana 10390, Sri Lanka
| | | | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
| |
Collapse
|
3
|
Rusu AV, Trif M, Rocha JM. Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations. Molecules 2023; 28:6020. [PMID: 37630272 PMCID: PMC10458110 DOI: 10.3390/molecules28166020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Food supplementation formulations refer to products that are designed to provide additional nutrients to the diet. Vitamins, dietary fibers, minerals and other functional compounds (such as antioxidants) are concentrated in dietary supplements. Specific amounts of dietary compounds are given to the body through food supplements, and these include as well so-called non-essential compounds such as secondary plant bioactive components or microbial natural products in addition to nutrients in the narrower sense. A significant social challenge represents how to moderately use the natural resources in light of the growing world population. In terms of economic production of (especially natural) bioactive molecules, ways of white biotechnology production with various microorganisms have recently been intensively explored. In the current review other relevant dietary supplements and natural substances (e.g., vitamins, amino acids, antioxidants) used in production of dietary supplements formulations and their microbial natural production via fermentative biotechnological approaches are briefly reviewed. Biotechnology plays a crucial role in optimizing fermentation conditions to maximize the yield and quality of the target compounds. Advantages of microbial production include the ability to use renewable feedstocks, high production yields, and the potential for cost-effective large-scale production. Additionally, it can be more environmentally friendly compared to chemical synthesis, as it reduces the reliance on petrochemicals and minimizes waste generation. Educating consumers about the benefits, safety, and production methods of microbial products in general is crucial. Providing clear and accurate information about the science behind microbial production can help address any concerns or misconceptions consumers may have.
Collapse
Affiliation(s)
- Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania;
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Meng L, Diao M, Wang Q, Peng L, Li J, Xie N. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:46. [PMID: 36890537 PMCID: PMC9996981 DOI: 10.1186/s12934-023-02055-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Resveratrol is a commercially available stilbenoid widely used as dietary supplements, functional food ingredients, and cosmetic ingredients due to its diverse physiological activities. The production of resveratrol in microorganisms provides an ideal source that reduces the cost of resveratrol, but the titer in Saccharomyces cerevisiae was still much lower than that in other hosts. RESULTS To achieve enhanced production of resveratrol in S. cerevisiae, we constructed a biosynthetic pathway via combining phenylalanine and tyrosine pathways by introducing a bi-functional phenylalanine/tyrosine ammonia lyase from Rhodotorula toruloides. The combination of phenylalanine pathway with tyrosine pathway led to a 462% improvement of resveratrol production in yeast extract peptone dextrose (YPD) medium with 4% glucose, suggesting an alternative strategy for producing p-coumaric acid-derived compounds. Then the strains were further modified by integrating multi-copy biosynthetic pathway genes, improving metabolic flux to aromatic amino acids and malonyl-CoA, and deleting by-pathway genes, which resulted in 1155.0 mg/L resveratrol in shake flasks when cultured in YPD medium. Finally, a non-auxotrophic strain was tailored for resveratrol production in minimal medium without exogenous amino acid addition, and the highest resveratrol titer (4.1 g/L) ever reported was achieved in S. cerevisiae to our knowledge. CONCLUSIONS This study demonstrates the advantage of employing a bi-functional phenylalanine/tyrosine ammonia lyase in the biosynthetic pathway of resveratrol, suggesting an effective alternative in the production of p-coumaric acid-derived compounds. Moreover, the enhanced production of resveratrol in S. cerevisiae lays a foundation for constructing cell factories for various stilbenoids.
Collapse
Affiliation(s)
- Lijun Meng
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Mengxue Diao
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Qingyan Wang
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Longyun Peng
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Jianxiu Li
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Nengzhong Xie
- State Key Laboratory of NonFood Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| |
Collapse
|
5
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
6
|
de Lourdes Chaves Macêdo E, Colombo Pimentel T, de Sousa Melo D, Cristina de Souza A, Santos de Morais J, Dos Santos Lima M, Ribeiro Dias D, Freitas Schwan R, Magnani M. Yeasts from fermented Brazilian fruits as biotechnological tools for increasing phenolics bioaccessibility and improving the volatile profile in derived pulps. Food Chem 2022; 401:134200. [PMID: 36115231 DOI: 10.1016/j.foodchem.2022.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Caatinga Biome fruits have been scarcely explored as a source of biotechnological yeasts. This study isolated yeasts from naturally fermented Caatinga fruits and evaluated Hanseniaspora opuntiae125,Issatchenkia terricola 129, and Hanseniaspora opuntiae 148 on fermentation of soursop and umbu-cajá pulps. All strains were able to ferment the pulps (72 h), increasing (p < 0.05) acetic acid, phenolics concentration and bioaccessibility, and maintaining counts above 7 log CFU/mL after fermentation and/or in vitro digestion. H. opuntiae 125 showed the highest counts (8.43-8.76 log CFU/mL; p < 0.05) in pulps and, higher organic acids production, increased survival to digestion, and higher bioaccessibility of various phenolics (p < 0.05) in the umbu-cajá pulp.I. terricola129 andH. opuntiae 148 showed higher metabolic activity, concentration and bioaccessibility of specific phenolics in umbu-cajá and soursop pulps, respectively (p < 0.05). Volatiles varied (p < 0.05) with the yeast strain. Generally, the yeast biotechnological performance for pulp fermentation was better on its fruit source.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil.
| |
Collapse
|