1
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
2
|
Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J. A Sequential Electrospinning of a Coaxial and Blending Process for Creating Double-Layer Hybrid Films to Sense Glucose. SENSORS (BASEL, SWITZERLAND) 2023; 23:3685. [PMID: 37050745 PMCID: PMC10099372 DOI: 10.3390/s23073685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of β-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of β-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in β-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Shixiong Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| |
Collapse
|
3
|
Zuo J, Yan T, Tang X, Zhang Q, Li P. Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B 1 in Maize. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2771-2780. [PMID: 36598495 DOI: 10.1021/acsami.2c20269] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent years, dual-modal immunosensors based on synthetic nanomaterials have provided accurate and sensitive detection. However, preparation of nanomaterial probes can be time-consuming, laborious, and not limited to producing inactive and low-affinity antibodies. These challenges can be addressed through the multifunction nanobody without conjugation. In this study, a nanobody-enhanced green fluorescent (Nb26-EGFP) was novel produced with a satisfactory affinity and fluorescent properties. Then, a dual-modal fluorescent/colorimetric immunosensor was constructed using the Nb26-EGFP-gold nanoflowers (AuNFs) composite as a probe, to detect the aflatoxin B1 (AFB1). In the maize matrix, the proposed immunosensor showed high sensitivity with a limit of detection (LOD) of 0.0024 ng/mL and a visual LOD of 1 ng/mL, which is 20-fold and 325-fold compared with the Nb26-EGFP-based single-modal immunosensor and original nanobody Nb26-based immunoassay. The performance of the dual-modal assay was validated by a high-performance liquid chromatography method. The recoveries were between 83.19 and 108.85%, with the coefficients of variation below 9.43%, indicating satisfied accuracy and repeatability. Overall, the novel Nb26-EGFP could be used as the detection probe, and the dual-modal immunosensor could be used as a practical detection method for AFB1 in real samples.
Collapse
Affiliation(s)
- Jiasi Zuo
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Tingting Yan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| |
Collapse
|
4
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
6
|
Su Z, Tang D, Yang X, Peng Y, Wang B, Li X, Chen J, Hu Y, Qin X. Selective and fast growth of CdS nanocrystals on zinc (II) metal–organic framework architectures for photoelectrochemical response and electrochemical immunosensor of foot-and-mouth disease virus. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|