1
|
Andiappan R, Govindan R, Ramasamy T, Poomarimuthu M. Circulating miR-133a-3p and miR-451a as potential biomarkers for diagnosis of coronary artery disease. Acta Cardiol 2024:1-11. [PMID: 39373072 DOI: 10.1080/00015385.2024.2410599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) remains the leading cause of mortality and morbidity around the world. Despite significant progress in the diagnosis and treatment of cardiovascular diseases, still there is a clinical need to identify novel biomarkers for early diagnosis and treatment of CAD. The aim of the study is to investigate circulating miRNAs in CAD patients to identify potential biomarkers for early detection and therapeutic management of CAD. METHODS We assessed the expression of different candidate miRNAs (miR-21-5p, miR-133a-3p, miR-221-3p, miR-451a and miR-584-5p) in plasma from 50 CAD patients and 50 controls by qRT-PCR analysis. RESULTS The expression levels of miR-133a-3p (fold change (FC): 28.05, p < 0.0001), miR-451a (FC: 27.47, p < 0.0001), miR-584-5p (FC: 7.89, p < 0.0001), miR-21-5p (FC: 5.35, p < 0.0001) and miR-221-3p (FC: 5.03, p < 0.0001) were significantly up-regulated in CAD patients compared to controls. Receiver operating characteristic curve analysis showed that miR-133a-3p and miR-451a were powerful biomarkers for detecting CAD. CONCLUSIONS Our results suggested that miR-21-5p, miR-133a-3p, miR-221-3p, miR-451a and miR-584-5p may serve as independent biomarkers for CAD. Further, the combination of miR-133a-3p and miR-451a could be used as a specific signature in CAD diagnosis.
Collapse
Affiliation(s)
- Rathinavel Andiappan
- Department of Cardio Vascular Thoracic Surgery, Madurai Medical College & Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Ramajayam Govindan
- Multidisciplinary Research Unit, Madurai Medical College, Madurai, Tamil Nadu, India
| | - Thirunavukkarasu Ramasamy
- Maternal-Child health Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | |
Collapse
|
2
|
Bonstingl L, Skofler C, Ulz C, Zinnegger M, Sallinger K, Schönberger J, Schuch K, Pankratz K, Borrás-Cherrier A, Somodi V, Abuja PM, Oberauner-Wappis L, Moser T, Heitzer E, Bauernhofer T, Kroneis T, El-Heliebi A. Clinical Application of ISO and CEN/TS Standards for Liquid Biopsies-Information Everybody Wants but Nobody Wants to Pay For. Clin Chem 2024; 70:1140-1150. [PMID: 38958115 DOI: 10.1093/clinchem/hvae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Liquid biopsies are emerging as valuable clinical biomarkers for cancer monitoring. Although International Organization for Standards (ISO) and Technical Specifications from the European Committee for Standardization (CEN/TS) standardized workflows exist, their implementation in clinical practice is underdeveloped. We aimed to assess the applicability of ISO and CEN/TS standards in a real-world clinical setting, with a particular focus on evaluating the impact of preanalytical parameters and hemolysis on liquid biopsy analysis. METHODS We evaluated 659 peripheral blood samples from advanced prostate cancer patients against ISO and CEN/TS standards and documented all essential criteria, including tube draw order, filling level, temperature, and time tracking from blood draw to storage. We assessed hemolysis and its effect on circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) analysis. RESULTS Our results demonstrated a high compliance rate, with 96.2% (634/659) of samples meeting essential ISO and CEN/TS criteria. We did not observe a significant impact on ctDNA or CTC detection rates between hemolytic and nonhemolytic samples. Hemolysis was identified in 12.9% (40/311) of plasma samples from our advanced prostate cancer cohort, and within the draw order of 5 blood collection tubes, hemolysis did not significantly increase from tube 1 to 5. In total, 83.8% (552/659) of blood collection tubes had high fill levels above 80% of nominal filling level. CONCLUSIONS Our study demonstrates the feasibility and benefits of adhering to ISO and CEN/TS standards in a clinical liquid biopsy study. The standards revealed that hemolysis occurred frequently but did not impair downstream ctDNA and CTC analysis in our cohort of advanced prostate cancer patients.
Collapse
Affiliation(s)
- Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
- ELBS, European Liquid Biopsy Society, Hamburg, Germany
| | - Christina Skofler
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Ulz
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
| | - Julia Schönberger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Schuch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Karin Pankratz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anatol Borrás-Cherrier
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Visnja Somodi
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Peter M Abuja
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Lisa Oberauner-Wappis
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Tina Moser
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- CBmed, Center for Biomarker Research in Medicine, Graz, Austria
- ELBS, European Liquid Biopsy Society, Hamburg, Germany
| |
Collapse
|
3
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10540-8. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
4
|
Letonja J, Petrovič D. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024; 12:1322. [PMID: 38927529 PMCID: PMC11201627 DOI: 10.3390/biomedicines12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally accepted that atherosclerosis is a chronic inflammatory disease. The link between atherosclerosis and other inflammatory diseases such as psoriasis, type 2 diabetes mellitus (T2DM), and rheumatoid arthritis (RA) via metabolic, inflammatory, and immunoregulatory pathways is well established. The aim of our review was to summarize the associations between selected microRNAs (miRs) and long non-coding RNAs (lncRNAs) and atherosclerosis, psoriasis, T2DM, and RA. We reviewed the role of miR-146a, miR-210, miR-143, miR-223, miR-126, miR-21, miR-155, miR-145, miR-200, miR-133, miR-135, miR-221, miR-424, let-7, lncRNA-H19, lncRNA-MEG3, lncRNA-UCA1, and lncRNA-XIST in atherosclerosis and psoriasis, T2DM, and RA. Extracellular vesicles (EVs) are a method of intracellular signal transduction. Their function depends on surface expression, cargo, and the cell from which they originate. The majority of the studies that investigated lncRNAs and some miRs had relatively small sample sizes, which limits the generalizability of their findings and indicates the need for more research. Based on the studies reviewed, miR-146a, miR-155, miR-145, miR-200, miR-133, and lncRNA-H19 are the most promising potential biomarkers and, possibly, therapeutic targets for atherosclerosis as well as T2DM, RA, and psoriasis.
Collapse
Affiliation(s)
- Jernej Letonja
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Agwa SHA, Elzahwy SS, Hossam N, Yahia YA, Hamady S, Sherif N, Elshazly A, Darwish RM, Hashim JO, Adly MA, Abd Elsamee AM, Shamekh R, Roushdy MMS, Matboli M. Discriminatory power of a circulating multi-noncoding RNA panel in acute coronary syndrome subtypes: Towards precision detection. Int J Biochem Cell Biol 2024; 169:106531. [PMID: 38280541 DOI: 10.1016/j.biocel.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Acute Coronary Syndrome (ACS) stands as a significant contributor to cardiovascular mortality, necessitating improved diagnostic tools for early detection and tailored therapeutic interventions. Current diagnostic modalities, exhibit limitations in sensitivity and specificity, urging the quest for novel biomarkers to enhance discrimination of the different stages of ACS including unstable angina, Non-ST-segment Elevation Myocardial Infarction (NSTEMI), and ST-segment Elevation Myocardial Infarction (STEMI). METHODS This study investigated the potential of a plasma-circulating multi-noncoding RNA (ncRNA) panel, comprising four miRNAs (miR-182-5p, miR-23a-3p, miR-146a-5p, and miR-183-5p) and three lncRNAs (SNHG15, SNHG5, and RMRP), selected based on their intricate involvement in ACS pathogenesis and signaling pathways regulating post-myocardial infarction (MI) processes. The differential expression of these ncRNAs was validated in sera of ACS patients and healthy controls via real-time polymerase chain reaction (RT-PCR). RESULTS Analysis revealed a marked upregulation of the multi-ncRNAs panel in ACS patients. Notably, miRNA-182-5p and lncRNA-RMRP exhibited exceptional discriminatory power, indicated by the high area under the curve (AUC) values (0.990 and 0.980, respectively). Importantly, this panel displayed superior efficacy in discriminating between STEMI and NSTEMI, outperforming conventional biomarkers like creatine kinase-MB and cardiac troponins. Additionally, the four miRNAs and lncRNA RMRP showcased remarkable proficiency in distinguishing between STEMI and unstable angina. CONCLUSION The findings underscore the promising potential of the multi-ncRNA panel as a robust tool for early ACS detection, and precise differentiation among ACS subtypes, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Sara H A Agwa
- Clinical pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt.
| | - Sherif Samir Elzahwy
- Cardiovascular Medicine Department, Faculty of Medicine, Ain Shams University, Cairo 1382, Egypt
| | - Nourhan Hossam
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Yahia A Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12566, Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Nadine Sherif
- Clinical pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Ahmed Elshazly
- Cardiovascular Medicine Department, Faculty of Medicine, Ain Shams University, Cairo 1382, Egypt
| | - Reham M Darwish
- Biochemistry and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Jomana Osama Hashim
- Biochemistry and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Mahmoud Ashraf Adly
- Biochemistry and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Aya M Abd Elsamee
- Biochemistry and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Rania Shamekh
- Department of Pathology, University of South Florida, Tampa, FL 33620, USA
| | - Marian Maher Salib Roushdy
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt.
| |
Collapse
|
6
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
8
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
9
|
Samadishadlou M, Rahbarghazi R, Piryaei Z, Esmaeili M, Avcı ÇB, Bani F, Kavousi K. Unlocking the potential of microRNAs: machine learning identifies key biomarkers for myocardial infarction diagnosis. Cardiovasc Diabetol 2023; 22:247. [PMID: 37697288 PMCID: PMC10496209 DOI: 10.1186/s12933-023-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expression Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer isolates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained different machine learning models using both biomarker sets and evaluated their performance on a test set. RESULTS We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the optimum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy samples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 on the test data. CONCLUSIONS Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Piryaei
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avcı
- Medical Biology Department, School of Medicine, Ege University, İzmir, Türkiye
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Ekedi AVNB, Rozhkov AN, Shchekochikhin DY, Novikova NA, Kopylov PY, Bestavashvili AA, Ivanova TV, Zhelankin AV, Generozov EV, Konanov DN, Akselrod AS. Evaluation of microRNA Expression Features in Patients with Various Types of Arterial Damage: Thoracic Aortic Aneurysm and Coronary Atherosclerosis. J Pers Med 2023; 13:1161. [PMID: 37511774 PMCID: PMC10381304 DOI: 10.3390/jpm13071161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Circulating serum miRNA are increasingly used as biomarkers and potential treatment targets in several clinical scenarios, including cardiovascular diseases. However, the current data on circulating miRNA in thoracic aorta aneurism (TAA) patients are inconclusive. The aim of the present study is to compare the levels of several circulating miRNA in patients with degenerative TAA, coronary artery disease (CAD), and controls for special profile identification. We have identified several candidates for the role of new biomarkers: miR-143-3p, miR-181-5p, miR-126-3p, miR-126-5p, miR-145-5p, miR-150-5p, and miR-195-5p. MATERIALS AND METHODS Serum samples of 100 patients were analyzed, including 388 TAA patients scheduled for elective surgery, 67 patients with stable CAD and 17 controls, were used for miRNA isolation and identification. RESULTS More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, miR-29b-5p, miR-126-5p/-3p, miR-181b-5p, and miR-92a-3p, with the latter microRNA being investigated as a novel potential marker of TAA for the first time. CONCLUSION TAA and CAD patients demonstrated a significant increase in the levels of circulating miR-126-5p/-3p, miR-181b-5p, and miR-29b-3p. More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, -29b-5p, -126-5p/-3p, 181b-5p, and -92a-3p, with the latter microRNA being investigated as a potential marker of TAA for the first time.
Collapse
Affiliation(s)
- Ange Veroniqe Ngo Bilong Ekedi
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey N Rozhkov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Yu Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nina A Novikova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Philippe Yu Kopylov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Afina A Bestavashvili
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Tatiana V Ivanova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey V Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Eduard V Generozov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry N Konanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Anna S Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Masoodi Khabar P, Ghydari ME, Vazifeh Shiran N, Shirazy M, Hamidpour M. Platelet MicroRNA-484 as a Novel Diagnostic Biomarker for Acute Coronary Syndrome. Lab Med 2023; 54:256-261. [PMID: 36214592 DOI: 10.1093/labmed/lmac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE Platelet microRNAs (miRs) have been indicated as a diagnostic biomarker in various diseases, including acute coronary syndrome (ACS). This study aimed to investigate the expression of miR-223-5p, miR-126-5p, miR-484, and miR-130a-3p in individuals with coronary artery disease (CAD). METHODS Forty subjects with CAD and 13 healthy individuals were under study. The expression of miR-223-5p, miR-126-5p, miR-484, and miR-130a-3p was measured in platelets by quantitative reverse transcription-polymerase chain reaction. The relationship between miRNA expression and various parameters of the subjects was analyzed using analysis of variance and Spearman and t-tests. RESULTS The miR-484 expression was significantly upregulated in the ACS subjects (P = .0097). Moreover, miR-484 had diagnostic value for screening subjects with unstable angina vs controls (area under the curve [AUC] = 0.978, 95% confidence interval [CI] 0.92-1, P = .0006) and NSTEMI patients versus controls (AUC = 0.910, 95% CI 0.74-1, P = .005). CONCLUSION The results of this study indicate that the upregulated expression of miR-484 in ACS patients might be used as a diagnostic biomarker in ACS.
Collapse
Affiliation(s)
- Parisa Masoodi Khabar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Esmail Ghydari
- Department of Cardiology, Taleghani General Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shirazy
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Centre - Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang Y, Shan L, Li D, Tang Y, Qian W, Dai J, Du M, Sun X, Zhu Y, Wang Q, Zhou L. Identification of key biomarkers associated with immune cells infiltration for myocardial injury in dermatomyositis by integrated bioinformatics analysis. Arthritis Res Ther 2023; 25:69. [PMID: 37118825 PMCID: PMC10142164 DOI: 10.1186/s13075-023-03052-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Dermatomyositis (DM) is an acquired autoimmune disease that can cause damage to various organs, including the heart muscle. However, the mechanisms underlying myocardial injury in DM are not yet fully understood. METHODS In this study, we utilized publicly available datasets from the Gene Expression Omnibus (GEO) database to identify hub-genes that are enriched in the immune system process in DM and myocarditis. Weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) analysis, protein-protein interaction (PPI), and gene ontology (GO) analysis were employed to identify these hub-genes. We then used the CIBERSORT method to analyze immune cell infiltration in skeletal muscle specimens of DM and myocardium specimens of myocarditis respectively. Correlation analysis was performed to investigate the relationship between key genes and infiltrating immune cells. Finally, we predicted regulatory miRNAs of hub-genes through miRNet and validated their expression in online datasets and clinical samples. RESULTS Using integrated bioinformatics analysis, we identified 10 and 5 hub-genes that were enriched in the immune system process in the database of DM and myocarditis respectively. The subsequent intersections between hub-genes were IFIT3, OAS3, ISG15, and RSAD2. We found M2 macrophages increased in DM and myocarditis compared to the healthy control, associating with the expression of IFIT3, OAS3, ISG15, and RSAD2 in DM and myocarditis positively. Gene function enrichment analysis (GSEA) showed that IFIT3, OAS3, ISG15, and RSAD2 were mainly enriched in type I interferon (IFN) signaling pathway, cellular response to type I interferon, and response to type I interferon. Finally, we verified that the expression of miR-146a-5p was significantly higher in the DM with myocardial injury than those without myocardial injury (p = 0.0009). CONCLUSION Our findings suggest that IFIT3, OAS3, ISG15, and RSAD2 may play crucial roles in the underlying mechanism of myocardial injury in DM. Serum miR-146a-5p could be a potential biomarker for myocardial injury in DM.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linwei Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyu Li
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Dai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengdi Du
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinsu Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Sessa F, Salerno M, Esposito M, Cocimano G, Pisanelli D, Malik A, Khan AA, Pomara C. New Insight into Mechanisms of Cardiovascular Diseases: An Integrative Analysis Approach to Identify TheranoMiRNAs. Int J Mol Sci 2023; 24:ijms24076781. [PMID: 37047756 PMCID: PMC10095439 DOI: 10.3390/ijms24076781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
MiRNAs regulate both physiological and pathological heart functions. Altered expression of miRNAs is associated with cardiovascular diseases (CVDs), making miRNAs attractive therapeutic strategies for the diagnosis and treatment of heart diseases. A recent publication defined, for the first time, the term theranoMiRNA, meaning the miRNAs that may be used both for diagnosis and treatment. The use of in silico tools may be considered fundamental for these purposes, clarifying several molecular aspects, suggesting future directions for in vivo studies. This study aims to explore different bioinformatic tools in order to clarify miRNA interactions with candidate genes, demonstrating the need to use a computational approach when establishing the most probable associations between miRNAs and target genes. This study focused on the functions of miR-133a-3p, miR-21-5p, miR-499a-5p, miR-1-3p, and miR-126-3p, providing an up-to-date overview, and suggests future lines of research in the identification of theranoMiRNAs related to CVDs. Based on the results of the present study, we elucidated the molecular mechanisms that could be linked between miRNAs and CVDs, confirming that these miRNAs play an active role in the genesis and development of heart damage. Given that CVDs are the leading cause of death in the world, the identification of theranoMiRNAs is crucial, hence the need for a definition of in vivo studies in order to obtain further evidence in this challenging field of research.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| |
Collapse
|
14
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|
15
|
Levstek T, Karun T, Rehberger Likozar A, Šebeštjen M, Trebušak Podkrajšek K. Interplay between microRNAs, Serum Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), and Lipid Parameters in Patients with Very High Lipoprotein(a) Treated with PCSK9 Inhibitors. Genes (Basel) 2023; 14:genes14030632. [PMID: 36980904 PMCID: PMC10048228 DOI: 10.3390/genes14030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has an important function in the regulation of lipid metabolism. PCSK9 reduces hepatic low-density lipoprotein receptors, thereby increasing low-density lipoprotein cholesterol levels. However, its regulation remains to be elucidated, including post-transcriptional regulation by microRNAs (miRNAs). We aimed to explore the interplay between miRNAs, total serum PCSK9, and lipids during treatment with PCSK9 inhibitors. A total of 64 patients with stable coronary artery disease and very high lipoprotein(a) levels and 16 sex- and age-matched control subjects were enrolled. Patients received a PCSK9 inhibitor (evolocumab or alirocumab). Total serum PCSK9 levels were measured by immunoassay. RNA was isolated from plasma using magnetic beads, and expression of selected miRNAs was analyzed by quantitative PCR. Total serum PCSK9 levels were significantly higher in control subjects compared with patients. After 6 months of treatment with PCSK9 inhibitors, total serum PCSK9 levels increased significantly. The expression of miR-191-5p was significantly lower, and the expression of miR-224-5p and miR-483-5p was significantly higher in patients compared with control subjects. Using linear regression, the expression of miR-483-5p significantly predicted the serum PCSK9 level at baseline. After the 6-month period of therapy, the expression of miR-191-5p and miR-483-5p significantly increased. Our results support a role for miR-483-5p in regulating circulating PCSK9 in vivo. The difference in expression of miR-191-5p, miR-224-5p, and miR-337-3p between patients and control subjects suggests their possible role in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tina Karun
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
16
|
Karere GM, Glenn JP, Li G, Konar A, VandeBerg JL, Cox LA. Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions. Sci Rep 2023; 13:3467. [PMID: 36859458 PMCID: PMC9977938 DOI: 10.1038/s41598-023-29074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Identification of potential therapeutic targets and biomarkers indicative of burden of early atherosclerosis that occur prior to advancement to life-threatening unstable plaques is the key to eradication of CAD prevalence and incidences. We challenged 16 baboons with a high cholesterol, high fat diet for 2 years and evaluated early-stage atherosclerotic lesions (fatty streaks, FS, and fibrous plaques, FP) in formalin-fixed common iliac arteries (CIA). We used small RNA sequencing to identify expressed miRNAs in CIA and in baseline blood samples of the same animals. We found 412 expressed miRNAs in CIA and 356 in blood samples. Eight miRNAs (miR-7975, -486-5p, -451a, -191-5p, -148a-3p, -17-5p, -378c, and -144-3p) were differentially expressed between paired fatty streak lesion and no-lesion sites of the tissue, and 27 miRNAs (e.g., miR-92a-3p, -5001, -342-3p, miR-28-3p, -21-5p, -221-3p, 146a-5p, and -16-5p) in fibrous plaques. The expression of 14 blood miRNAs significantly correlated with extent of lesions and the number of plaques. We identified coordinately regulated miRNA-gene networks in which miR-17-5p and miR-146a-5p are central hubs and miR-5001 and miR-7975 are potentially novel miRNAs associated with early atherosclerosis. In summary, we have identified miRNAs expressed in lesions and in blood that correlate with lesion burden and are potential therapeutic targets and biomarkers. These findings are a first step in elucidating miRNA regulated molecular mechanisms that underlie early atherosclerosis in a baboon model, enabling translation of our findings to humans.
Collapse
Affiliation(s)
- Genesio M Karere
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Jeremy P Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ge Li
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ayati Konar
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownville, Harlingen, Edinburg, TX, 78520, USA
| | - Laura A Cox
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| |
Collapse
|
17
|
Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023; 540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) encompass a family of ubiquitous RNA molecules that lack protein-coding potential and have tissue-specific expression. A significant body of evidence indicates that ncRNA's aberrant expression plays a critical role in disease onset and development. NcRNAs' biochemical characteristics such as disease-associated concentration changes, structural stability, and high abundance in body fluids make them promising prognostic and diagnostic biomarkers. Myocardial infarction (MI) is a leading cause of mortality worldwide. Acute myocardial infarction (AMI), the term in use to describe MI's early phase, is generally diagnosed by physical examination, electrocardiogram (ECG), and the presence of specific biomarkers. In this regard, compared to standard MI biomarkers, such as the cardiac troponin isoforms (cTnT & cTnI) and the Creatinine Kinase (CK), ncRNAs appears to provide better sensitivity and specificity, ensuring a rapid and correct diagnosis, an earlier treatment, and consequently a good prognosis for the patients. This review aims to summarize and discuss the most promising and recent data on the potential clinical use of circulating ncRNAs as MI biomarkers. Specifically, we focused primarily on miRNAs and lncRNAs, highlighting their significant specificity and sensitivity, discussing their limitations, and suggesting possible overcoming approaches.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
18
|
Kabłak-Ziembicka A, Badacz R, Przewłocki T. Clinical Application of Serum microRNAs in Atherosclerotic Coronary Artery Disease. J Clin Med 2022; 11:6849. [PMID: 36431326 PMCID: PMC9698927 DOI: 10.3390/jcm11226849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRs) are promising diagnostic, prognostic and therapeutic biomolecules for atherosclerotic cardiovascular disease. Atherosclerotic occlusive disease concerns a large population of patients, carrying the highest incidence of fatal and non-fatal adverse events, such as myocardial infarction, ischemic stroke, and limb ischemia, worldwide. Consistently, miRs are involved in regulation and pathogenesis of atherosclerotic coronary artery disease (CAD), acute coronary syndromes (ACS), both with ST-segment (STEMI) and non-ST segment elevation myocardial infarctions (NSTEMI), as well as cardiac remodeling and fibrosis following ACS. However, the genetic and molecular mechanisms underlying adverse outcomes in CAD are multifactorial, and sometimes difficult to interpret for clinicians. Therefore, in the present review paper we have focused on the clinical meaning and the interpretation of various miRs findings, and their potential application in routine clinical practice.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Noninvasive Cardiovascular Laboratory, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Tadeusz Przewłocki
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
| |
Collapse
|
19
|
Advances in Molecular Biomarkers in Cardiology. Biomolecules 2022; 12:biom12101530. [PMID: 36291738 PMCID: PMC9599388 DOI: 10.3390/biom12101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
|
20
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
21
|
Zhang M, Hu Y, Li H, Guo X, Zhong J, He S. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis. Front Genet 2022; 13:936937. [PMID: 36105099 PMCID: PMC9464939 DOI: 10.3389/fgene.2022.936937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Coronary artery disease (CAD) is a common cardiovascular disease that has attracted attention worldwide due to its high morbidity and mortality. Recent studies have shown that abnormal microRNA (miRNA) expression is effective in CAD diagnoses and processes. However, the potential relationship between miRNAs and CAD remains unclear. Methods: Microarray datasets GSE105449 and GSE28858 were downloaded directly from the Gene Expression Omnibus (GEO) to identify miRNAs involved in CAD. Target gene prediction and enrichment analyses were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results: There were nine differentially expressed miRNAs in CAD patients compared to the controls. A total of 352 genes were predicted and subjected to GO analysis, which showed that differentially expressed genes (DEGs) were mainly associated with axon guidance, neuron projection guidance, neuron-to-neuron synapses, and postsynaptic density. According to the KEGG pathway analysis, the most enriched pathways were those involved in transcriptional misregulation in cancer, growth hormone synthesis, secretion and action, endocrine resistance, axon guidance, and Cushing syndrome. Pathway analysis was mainly involved in the HIPPO and prion disease signaling pathways. Furthermore, a competing endogenous RNA (ceRNA) interaction network centered on miR-22-3p revealed eight related transcription factors in the cardiovascular system. The receiver operating characteristic (ROC) curve analysis suggested that miR-22-3p may be a better CAD predictor. Conclusion: The results indicate that miR-22-3p may function in pathophysiological CAD processes. Our study potentiates miR-22-3p as a specific biomarker for diagnosing CAD.
Collapse
Affiliation(s)
- Minghua Zhang
- Department of Cardiovascular Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Minghua Zhang,
| | - Yan Hu
- Nursing Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoda Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaozi Guo
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junhui Zhong
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sha He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Meng H, Ruan J, Yan Z, Chen Y, Liu J, Li X, Meng F. New Progress in Early Diagnosis of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23168939. [PMID: 36012202 PMCID: PMC9409135 DOI: 10.3390/ijms23168939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary atherosclerosis is a potentially chronic circulatory condition that endangers human health. The biological cause underpinning cardiovascular disease is coronary atherosclerosis, and acute cardiovascular events can develop due to thrombosis, platelet aggregation, and unstable atherosclerotic plaque rupture. Coronary atherosclerosis is progressive, and three specific changes appear, with fat spots and stripes, atherosclerosis and thin-walled fiber atherosclerosis, and then complex changes in arteries. The progression and severity of cardiovascular disease are correlated with various levels of calcium accumulation in the coronary artery. The therapy and diagnosis of coronary atherosclerosis benefit from the initial assessment of the size and degree of calcification. This article will discuss the new progress in the early diagnosis of coronary atherosclerosis in terms of three aspects: imaging, gene and protein markers, and trace elements. This study intends to present the latest methods for diagnosing patients with early atherosclerosis through a literature review.
Collapse
Affiliation(s)
- Heyu Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jianjun Ruan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Zhaohan Yan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Yanqiu Chen
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Correspondence: ; Tel.: +86-15948346855
| |
Collapse
|
23
|
Dong M, Chen D, Zhu Y, Yang S, Kumar S, Zhang R, Zhou Y, Yang Z, Zheng N, Zhu T, Xiang J, Liu Y, Kang L, Liu J. Impaired regulation of MMP2/16-MLCK3 by miR-146a-5p increased susceptibility to myocardial ischemic injury in aging mice. Cardiovasc Res 2022; 119:786-801. [PMID: 35727952 PMCID: PMC10153423 DOI: 10.1093/cvr/cvac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Aging impairs cardiac function and increases susceptibility to myocardial ischemic injury. Cardiac myosin light chain kinase (MLCK3) phosphorylates cardiac myosin regulatory light chain (MLC2), controlling sarcomere organization and cardiomyocyte contraction. Dysregulation of MLCK3 and phosphorylated MLC2 (p-MLC2) contributes to heart failure after myocardial infarction (MI). We aimed at exploring how the MLCK3-p-MLC2 axis changes in aging hearts post MI and at investigating the underlying regulatory mechanisms. METHODS AND RESULTS We generated adult (3 months) and aged (30 months) MI mouse models to compare their cardiac performance, and then detected MLCK3 expression and MLC2 activity. Aging increased the size of MI-induced infarctions and promoted cardiac contractile dysfunction. Furthermore, MLCK3 expression and MLC2 activity increased in adult hearts after MI, but not in aged hearts. miR-146a was found consistently increased in adult and aged hearts post-MI. Mechanistic analyses performed in vitro demonstrated that miR-146a-5p downregulated matrix metalloprotease (MMP)2/16 expression in cardiomyocytes. This downregulation in turn increased MLCK3 expression and MLC2 activity. However, miR-146a-5p failed to regulate the MMP2/16-MLCK3-p-MLC2 axis in senescent cardiomyocytes or in cardiac miR-146a conditional knockout mice, with the latter experiencing an exacerbated deterioration of cardiac function post-MI. CONCLUSION These results suggest that increase of MLCK3 and p-MLC2 contents through decreasing MMP2/16 by miR-146a-5p represents a compensatory mechanism that can protect cardiac contractile function after MI. Aging impairs this miR-146a-5p-regulated MMP2/16-MLCK3-p-MLC2 contractile axis, leading to compromised contractile function and increased susceptibility to heart failure.
Collapse
Affiliation(s)
- Ming Dong
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China.,Guangzhou Laboratory, GuangdongChina
| | | | - Yanxia Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology, ShenzhenChina
| | - Sanatosh Kumar
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Rui Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yin Zhou
- Guangzhou Laboratory, GuangdongChina
| | - Ziyi Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Na Zheng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Ting Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Jiaqing Xiang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yun Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Lin Kang
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, China.,Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
24
|
Balashkevich N, Kazymov M, Syzdykbayev M, Adylova A. Molecular basis of acute coronary syndrome. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:40. [PMID: 35968216 PMCID: PMC9374151 DOI: 10.4103/jrms.jrms_695_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular diseases (CVD) comprise of various heart and blood vessels-related diseases. Acute coronary syndrome (ACS) is one of them. Basic researchers and cardiologists have witnessed landmark developments related to ACS and despite rapid refinement in our understanding; scientists are seeking answers for more questions. Scientists have mapped wide ranging proteins and intricate protein networks which play central role in the pathogenesis in ACS. In this review, we have attempted to summarize underlying causes of ACS. Better understanding of the disease pathology will enable us to get a step closer to an effective clinical management.
Collapse
Affiliation(s)
| | - Maxut Kazymov
- Department of Family Medicine, Semey Medical University, Semey, Kazakhstan
| | - Marat Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey, Kazakhstan
| | - Aima Adylova
- Department of Public Health, Kazakhstan School of Public Health, Almaty, Kazakhstan,Address for correspondence: Dr. Aima Adylova, Kazakhstan School of Public Health, Almaty, Kazakhstan. E-mail:
| |
Collapse
|
25
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
26
|
Liu C, Liu L, Gao J, Wang J, Liu Y. Identification of Two Long Non-Coding RNAs AC010082.1 and AC011443.1 as Biomarkers of Coronary Heart Disease Based on Logistic Stepwise Regression Prediction Model. Front Genet 2021; 12:780431. [PMID: 34868268 PMCID: PMC8637336 DOI: 10.3389/fgene.2021.780431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) is a global health concern with high morbidity and mortality rates. This study aimed to identify the possible long non-coding RNA (lncRNA) biomarkers of CHD. The lncRNA- and mRNA-related data of patients with CHD were downloaded from the Gene Expression Omnibus database (GSE113079). The limma package was used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively). Then, miRcode, TargetScan, miRDB, and miRTarBase databases were used to form the competing endogenous RNA (ceRNA) network. Furthermore, SPSS Modeler 18.0 was used to construct a logistic stepwise regression prediction model for CHD diagnosis based on DElncRNAs. Of the microarray data, 70% was used as a training set and 30% as a test set. Moreover, a validation cohort including 30 patients with CHD and 30 healthy controls was used to verify the hub lncRNA expression through real-time reverse transcription-quantitative PCR (RT-qPCR). A total of 185 DElncRNAs (114 upregulated and 71 downregulated) and 382 DEmRNAs (162 upregulated and 220 downregulated) between CHD and healthy controls were identified from the microarray data. Furthermore, through bioinformatics prediction, a 38 lncRNA-21miRNA-40 mRNA ceRNA network was constructed. Next, by constructing a logistic stepwise regression prediction model for 38 DElncRNAs, we screened two hub lncRNAs AC010082.1 and AC011443.1 (p < 0.05). The sensitivity, specificity, and area under the curve were 98.41%, 100%, and 0.995, respectively, for the training set and 93.33%, 91.67%, and 0.983, respectively, for the test set. We further verified the significant upregulation of AC010082.1 (p < 0.01) and AC011443.1 (p < 0.05) in patients with CHD using RT-qPCR in the validation cohort. Our results suggest that lncRNA AC010082.1 and AC011443.1 are potential biomarkers of CHD. Their pathological mechanism in CHD requires further validation.
Collapse
Affiliation(s)
- Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Technology Laboratory of Cardiovascular Disease-Syndrome Combination, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Technology Laboratory of Cardiovascular Disease-Syndrome Combination, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
MicroRNA-146a Serves as a Biomarker for Adverse Prognosis of ST-Segment Elevation Myocardial Infarction. Cardiovasc Ther 2021; 2021:2923441. [PMID: 34786024 PMCID: PMC8561321 DOI: 10.1155/2021/2923441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
Objective This study is aimed at exploring the underlying molecular mechanisms of ST-segment elevation myocardial infarction (STEMI) and provides potential clinical prognostic biomarkers for STEMI. Methods The GSE60993 dataset was downloaded from the GEO database, and the differentially expressed genes (DEGs) between STEMI and control groups were screened. Enrichment analysis of the DEGs was subsequently performed using the DAVID database. A protein-protein interaction network was constructed, and hub genes were identified. The hub genes in patients were then validated by quantitative reverse transcription-PCR. Furthermore, hub gene-miRNA interactions were evaluated using the miRTarBase database. Finally, patient data on classical cardiovascular risk factors were collected, and plasma microRNA-146a (miR-146a) levels were detected. An individualized nomogram was constructed based on multivariate Cox regression analysis. Results A total of 239 DEGs were identified between the STEMI and control groups. Expression of S100A12 and miR-146a was significantly upregulated in STEMI samples compared with controls. STEMI patients with high levels of miR-146a had a higher risk of major adverse cardiovascular events (MACEs) than those with low levels of miR-146a (log-rank P = 0.034). Multivariate Cox regression analysis identified five statistically significant variables, including age, hypertension, diabetes mellitus, white blood cells, and miR-146a. A nomogram was constructed to estimate the likelihood of a MACE at one, two, and three years after STEMI. Conclusion The incidence of MACEs in STEMI patients expressing high levels of miR-146a was significantly greater than in those expressing low levels. MicroRNA-146a can serve as a biomarker for adverse prognosis of STEMI and might function in its pathogenesis by targeting S100A12, which may exert its role via an inflammatory response. In addition, our study presents a valid and practical model to assess the probability of MACEs within three years of STEMI.
Collapse
|
28
|
Chang YJ, Wang KC. Therapeutic perspectives of extracellular vesicles and extracellular microRNAs in atherosclerosis. CURRENT TOPICS IN MEMBRANES 2021; 87:255-277. [PMID: 34696887 DOI: 10.1016/bs.ctm.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular signaling molecules, such as growth factors, cytokines, and hormones, regulate cell behaviors and fate through endocrine, paracrine, and autocrine actions and play essential roles in maintaining tissue homeostasis. MicroRNAs, an important class of posttranscriptional modulators, could stably present in extracellular space and body fluids and participate in intercellular communication in health and diseases. Indeed, recent studies demonstrated that microRNAs could be secreted through vesicular and non-vesicular routes, transported in body fluids, and then transmitted to recipient cells to regulate target gene expression and signaling events. Over the past decade, a great deal of effort has been made to investigate the functional roles of extracellular vesicles and extracellular microRNAs in pathological conditions. Emerging evidence suggests that altered levels of extracellular vesicles and extracellular microRNAs in body fluids, as part of the cellular responses to atherogenic factors, are associated with the development of atherosclerosis. This review article provides a brief overview of extracellular vesicles and perspectives of their applications as therapeutic tools for cardiovascular pathologies. In addition, we highlight the role of extracellular microRNAs in atherogenesis and offer a summary of circulating microRNAs in liquid biopsies associated with atherosclerosis.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
29
|
Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, Popescu D, Floria M, Rezus E, Rezus C. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life (Basel) 2021; 11:life11101057. [PMID: 34685428 PMCID: PMC8541211 DOI: 10.3390/life11101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Regardless of the newly diagnostic and therapeutic advances, coronary artery disease (CAD) and more explicitly, ST-elevation myocardial infarction (STEMI), remains one of the leading causes of morbidity and mortality worldwide. Thus, early and prompt diagnosis of cardiac dysfunction is pivotal in STEMI patients for a better prognosis and outcome. In recent years, microRNAs (miRNAs) gained attention as potential biomarkers in myocardial infarction (MI) and acute coronary syndromes (ACS), as they have key roles in heart development, various cardiac processes, and act as indicators of cardiac damage. In this review, we describe the current available knowledge about cardiac miRNAs and their functions, and focus mainly on their potential use as novel circulating diagnostic and prognostic biomarkers in STEMI.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ana Roxana Ganceanu-Rusu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|