1
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
3
|
Pan S, Niu Y, Duan S, Zhao D, Wang Q, Dong Z, Cai G, Chen X. Uric acid mediates the relationship between mixed heavy metal exposure and renal function in older adult people. Front Public Health 2024; 12:1403878. [PMID: 39104895 PMCID: PMC11298488 DOI: 10.3389/fpubh.2024.1403878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Background Population aging is a pivotal trend observed globally, and the exposure to heavy metals can exacerbate the aging process and lead to kidney damage. However, the impact of combined heavy metal exposure on renal function among older individuals remains elusive. Our study employs machine learning techniques to delve into the effects and underlying mechanisms of mixed exposure to heavy metals on the renal function of the aging population. Methods This study extracted comprehensive data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2015 and 2020. A total of 3,175 participants aged 60 years and above, with complete information on six metals - lead, cadmium, manganese, cobalt, mercury, and selenium, along with relevant covariates, were included in the study. To assess the impact of single or mixed metal exposure on the renal function of older adult individuals, various statistical techniques were employed: multiple logistic regression, weighted quantitative sum (WQS) regression, Bayesian kernel machine regression (BKMR), and mediation effects analysis. Results Multiple logistic regression revealed that selenium and manganese were protective factors for chronic kidney disease (CKD). Cobalt was a risk factor for CKD. High concentrations of lead, cadmium, and cobalt were risk factors for urinary albumin creatinine ratio (ACR). WQS analyses revealed that mixed metal exposure was positively correlated with estimated glomerular filtration rate (eGFR) but negatively correlated with CKD. Selenium and manganese can neutralize the effects of other metals on eGFR. Mixed metal exposure was positively correlated with ACR, with lead and cadmium having a substantial effect. Mediation analysis showed that uric acid (UA) had a mediating effect of 9.7% and -19.7% in the association between mixed metals exposure and proteinuria and CKD, respectively. Conclusion The impact of heavy metals on renal function in the older adult differs from that of adolescents and adults. This study suggests that elevated levels of mixed metals exposure are linked to proteinuria and CKD, with UA serving as a mediating factor.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
4
|
Li C, Liu X, Li J, Lai J, Su J, Zhu B, Gao B, Li Y, Zhao M. Selenomethionine Inhibited HADV-Induced Apoptosis Mediated by ROS through the JAK-STAT3 Signaling Pathway. Nutrients 2024; 16:1966. [PMID: 38931321 PMCID: PMC11206631 DOI: 10.3390/nu16121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Adenovirus (HAdV) can cause severe respiratory infections in children and immunocompromised patients. There is a lack of specific therapeutic drugs for HAdV infection, and the study of anti-adenoviral drugs has far-reaching clinical implications. Elemental selenium can play a specific role as an antioxidant in the human immune cycle by non-specifically binding to the amino acid methionine in body proteins. Methods: The antiviral mechanism of selenomethionine was explored by measuring cell membrane status, intracellular DNA status, cytokine secretion, mitochondrial membrane potential, and ROS production. Conclusions: Selenomethionine improved the regulation of ROS-mediated apoptosis by modulating the expression of Jak1/2, STAT3, and BCL-XL, which led to the inhibition of apoptosis. It is anticipated that selenomethionine will offer a new anti-adenoviral therapeutic alternative.
Collapse
Affiliation(s)
- Chuqing Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Xia Liu
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jiali Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai 200437, China;
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| |
Collapse
|
5
|
Yin G, Zhao S, Zhao M, Xu J, Ge X, Wu J, Zhou Y, Liu X, Wei L, Xu Q. Complex interplay of heavy metals and renal injury: New perspectives from longitudinal epidemiological evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116424. [PMID: 38723382 DOI: 10.1016/j.ecoenv.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-β-D-glucosaminidase (NAG), and β2-microglobulin (β2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.
Collapse
Affiliation(s)
- Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yifan Zhou
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 100123, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning 121001, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
6
|
Wang Y, Zhang H, Tang P, Jiao B, Chen Y, Liu S, Yi M, Dai Y. Association between blood metals mixture and chronic kidney disease in adults: NHANES 2013-2016. J Trace Elem Med Biol 2024; 83:127395. [PMID: 38290270 DOI: 10.1016/j.jtemb.2024.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The association between single metal exposure and chronic kidney disease (CKD) has been established. However, there is limited research on the effects of multi-metal mixtures and their potential age-specific associations with kidney injury. This study aimed to examine the relationship between metal mixtures and kidney function in adults, while also exploring the modifying effects of age. METHODS We included a subset (n = 4250) of a nationally representative adult population in the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Kidney function was assessed using the glomerular filtration rate (eGFR) and creatinine albumin ratio (ACR). The individual and combined effects of lead (Pb), cadmium (Cd), mercury, and manganese on kidney injury and the risk of CKD were evaluated. RESULTS Pb and Cd were found to be positively associated with decreased kidney function. For a one Ln-unit increase in lead and cadmium, the adjusted ORs of CKD were 1.60 (95% CI: 1.35, 1.90) and 1.41 (95% CI:1.12, 1.77), respectively. We also observed an interaction between lead and cadmium for ACR. We also observed the joint effect between Pb and Cd on eGFR, ACR and CKD. Stratified analysis found a higher risk of decreased kidney function among older individuals. The quantile-g calculation model further showed that metal mixture was associated with decreased kidney function and the risk of CKD (OR = 1.53, 95% CI: 1.22, 1.90). And lead and cadmium were the main contributors. And Pb and Cd were the major components that increased the risk of CKD. CONCLUSION Co-exposure to metal mixture were associated with reduced kidney function in adults, especially in older. Our findings support co-exposure to lead and cadmium as risk factors of CKD in adults.
Collapse
Affiliation(s)
- Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Zhang
- Department of Occupational disease, Qingdao Central Hospital, Shandong 266042, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanyuan Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengnan Yi
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Nan Y, Yang J, Yang J, Wei L, Bai Y. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 2024; 202:850-865. [PMID: 37291467 DOI: 10.1007/s12011-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.
Collapse
Affiliation(s)
- Yaxing Nan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jinyu Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Lili Wei
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China.
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
8
|
Fan S, Lin L, Li P, Tian H, Shen J, Zhou L, Zhao Q, Zhang J, Qin Y, Tang C. Selenomethionine protects the liver from dietary deoxynivalenol exposure via Nrf2/PPARγ-GPX4-ferroptosis pathway in mice. Toxicology 2024; 501:153689. [PMID: 38040082 DOI: 10.1016/j.tox.2023.153689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deoxynivalenol (DON) is a significant Fusarium toxin that has gained global attention due to its high frequency of contamination in food and feed. It was reported to have hepatotoxicity, immunotoxicity, and reproduction toxicity in organs. On the other hand, Selenomethionine (SeMet) was proven to have anti-oxidation, tissue repairing, immunity improvement, and antifungal mycotoxin infection functions. However, the molecular mechanism by which SeMet alleviates DON damage is not yet clear. C57BL/6 mice were randomly divided into three groups, Se-A and Se-A+DON were fed with a diet containing 0.2 mg/kg Se whereas Se-S+DON were fed with a diet of 1.0 mg/kg Se. After feeding for four weeks, the mice were gavaged for 21 days with DON (2.0 mg/kg BW) or ultrapure water once per day. In the present study, we showed that SeMet significantly decreased the lipid peroxidation product malondialdehyde, and increased activities of antioxidant enzymes superoxide dismutase and total antioxidant capacity after DON exposure. In addition, our investigation revealed that SeMet regulated pathways related to lipid synthesis and metabolisms, and effectively mitigated DON-induced liver damage. Moreover, we have discovered that SeMet downregulation of N-acylethanolamine and HexCer accumulation induced hepatic lipotoxicity. Further study showed that SeMet supplementation increased protein levels of glutathione peroxidase 4 (GPX4), peroxisome proliferator-activated receptor γ (PPARγ), nuclear erythroid 2-related factor 2 (Nrf2), and upregulated target proteins, indicating suppression of oxidative stress in the liver. Meanwhile, we found that SeMet significantly reduced the DON-induced protein abundances of Bcl2, Beclin1, LC3B and proteins related to ferroptosis (Lpcat3, and Slc3a2), and downregulation of Slc7a11. In conclusion, SeMet protected the liver from damage by enhancing the Nrf2/PPARγ-GPX4-ferroptosis pathway, inhibiting lipid accumulation and hepatic lipotoxicity. The findings of this study indicated that SeMet has a positive impact on liver health by improving antioxidant capacity and relieving lipotoxicity in toxin pollution.
Collapse
Affiliation(s)
- Shijie Fan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luxi Lin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jialu Shen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Chen H, Wang M, Li J. Exploring the association between two groups of metals with potentially opposing renal effects and renal function in middle-aged and older adults: Evidence from an explainable machine learning method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115812. [PMID: 38091680 DOI: 10.1016/j.ecoenv.2023.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Machine learning models have promising applications in capturing the complex relationship between mixtures of exposures and outcomes. OBJECTIVE Our study aimed at introducing an explainable machine learning (EML) model to assess the association between metal mixtures with potentially opposing renal effects and renal function in middle-aged and older adults. METHODS This study extracted data from two cycle years of the National Health and Nutrition Examination Survey (NHANES). Participants aged 45 years or older with complete data on six metals (lead, cadmium, manganese, mercury, and selenium) and related covariates were enrolled. The EML model was developed by the optimized machine learning model together with Shapley Additive exPlanations (SHAP) to assess the chronic kidney disease (CKD) risk with metal mixtures. The results from EML were further compared in detail with multiple logistic regression (MLR) and Bayesian kernel machine regression (BKMR). RESULTS After adjusting for included covariates, MLR pointed out the lead and arsenic were generally positively associated with CKD, but manganese had a negative association. In the BKMR analysis, each metal was found to have a non-linear association with the risk of CKD, and interactions can exist between metals, especially for arsenic and lead. The EML ranked the feature importance: lead, manganese, arsenic and selenium were close behind in importance after gender, age or BMI for participants with CKD. Strong interactions between mercury and lead, manganese and cadmium and arsenic and manganese were identified by partial dependence plot (PDP) of SHAP and bivariate exposure-response effect plots of BKMR. The EML model determined the "trigger point" at which the risk of CKD abruptly changed. CONCLUSION Co-exposure to metals with different nephrotoxicity could have different joint association with renal function, and EML can be a powerful method for studying complex exposure mixtures.
Collapse
Affiliation(s)
- Haoran Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Min Wang
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Jiao Li
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China.
| |
Collapse
|
10
|
Wang G, Fang L, Chen Y, Ma Y, Zhao H, Wu Y, Xu S, Cai G, Pan F. Association between exposure to mixture of heavy metals and hyperlipidemia risk among U.S. adults: A cross-sectional study. CHEMOSPHERE 2023; 344:140334. [PMID: 37788750 DOI: 10.1016/j.chemosphere.2023.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Previous studies have suggested that exposure to heavy metals might increase the risk of hyperlipidemia. However, limited research has investigated the association between exposure to mixture of heavy metals and hyperlipidemia risk. To explore the independent and combined effects of heavy metal exposure on hyperlipidemia risk, this study involved 3293 participants from the National Health and Nutrition Examination Survey (NHANES), including 2327 with hyperlipidemia and the remaining without. In the individual metal analysis, the logistic regression model confirmed the positive effects of barium (Ba), cadmium (Cd), mercury (Hg), Lead (Pb), and uranium (U) on hyperlipidemia risk, Ba, Cd, Hg and Pb were further validated in restricted cubic splines (RCS) regression model and identified as positive linear relationships. In the metal mixture analysis, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile-based g computation (qgcomp) models consistently revealed a positive correlation between exposure to metal mixture and hyperlipidemia risk, with Ba, Cd, Hg, Pb, and U having significant positive driving roles in the overall effects. These associations were more prominent in young/middle-aged individuals. Moreover, the BKMR model uncovered some interactions between specific heavy metals. In conclusion, this study offers new evidence supporting the link between combined exposure to multiple heavy metals and hyperlipidemia risk, but considering the limitations of this study, further prospective research is required.
Collapse
Affiliation(s)
- Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
11
|
Bhardwaj V, Patel AM, Ballabh A. Stimuli responsive gelation of tert-butylacetic acid based LMOGs - applications in remediation of marine oil spills, dye removal and heavy metal sensing. SOFT MATTER 2023; 19:8595-8603. [PMID: 37909072 DOI: 10.1039/d3sm00960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tert-butylacetic acid based amides containing a structural backbone, a hydrogen bonding linker and a bulky end group have been synthesized (TBA1-TBA6) and explored for gelation of fuel oils and organic solvents. The importance of the tert-butyl group in driving the assembly towards gelation has been highlighted in our previously reported pivalamide-based phase selective organogelators (PSOGs). Both groups of compounds have been scrutinized and the effect of an additional methylene group in the newly synthesized series of compounds (on the gelation behavior, single crystal structure, non-covalent interactions responsible for gelation, morphology, dye absorption, etc.) were probed. Compounds TBA1-TBA6 were also utilized for sensing heavy metal ions and transition metal ions present in aqueous medium. They display phase-selective gelation of oil in the presence of biphasic systems (oil-sea water) when added in powder form as well as in solution form, and hence, make excellent candidates for containing oil spills in water bodies. Overall, both these libraries form a class of smallest molecules ever employed for successful organogelation behavior.
Collapse
Affiliation(s)
- Varsha Bhardwaj
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India.
| | - Ajaykumar M Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India.
| | - Amar Ballabh
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India.
| |
Collapse
|
12
|
Delgado-Suarez I, Lozano-Bilbao E, Hardisson A, Paz S, Gutiérrez ÁJ. Metal and trace element concentrations in cetaceans worldwide: A review. MARINE POLLUTION BULLETIN 2023; 192:115010. [PMID: 37167666 DOI: 10.1016/j.marpolbul.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
This bibliographical review is a compilation of different scientific publications that reported data on metal concentrations in the muscle tissue of different species of cetaceans from seas and oceans around the world. Forty-nine scientific articles were selected, published over a fifteen-year period (2006-2021) with data on heavy metals and trace elements. The different groups of cetaceans considered in this study generally presented low concentrations of Cd and Pb. The same cannot be said of Hg. The highest concentrations of Hg were found in the groups of false killer whales. Similarly, the use of these groups of cetaceans as bioindicators of metal contamination shows that the Mediterranean Sea is one of the most metallically contaminated areas in the world. This may be due to the closed nature of the Mediterranean Sea and to the fact that it is also a highly populated and industrialized area.
Collapse
Affiliation(s)
- Indira Delgado-Suarez
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Enrique Lozano-Bilbao
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
13
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Chen D, Jiang L, Ma M, Wan X. Association of Blood Selenium Level with Estimated Glomerular Filtration Rate in the Aging Population: a Cross-sectional Study. Biol Trace Elem Res 2023; 201:2258-2265. [PMID: 35809184 DOI: 10.1007/s12011-022-03351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
The relationship between blood selenium level and estimated glomerular filtration rate (eGFR) had been explored in previous studies. However, there are few studies about the correlation between blood selenium level and eGFR in the elderly population. This study was undertaken to investigate the relationship between blood selenium level and eGFR in the aged. The present study was a cross-sectional study and used the National Health and Nutrition Examination Survey (NHANES) 2011-2018 dataset. We investigated the association between blood selenium level and eGFR among participants aged 60 years or older. Totally, 4423 participants were enrolled, and the average age was 69.7 ± 6.9 years old. The means of blood selenium level and eGFR were 192.9 ± 29.5 ug/L and 74.1 ± 19.9 mL/min/1.73 m2, respectively. After adjusting potential confounders (age, gender, body mass index, ethnicity, marital status, education, family income to poverty ratio, smoking, hypertension, and diabetes mellitus), non-linear relationship was detected between blood selenium level and eGFR, whose inflection point was 202 ug/L. The effect sizes (β) and the confidence intervals on the left and right sides of inflection point were 0.07 (0.04 to 0.11) and 0.01 (- 0.02 to 0.04), respectively. In addition, subgroup analysis showed that blood selenium level was positively associated with eGFR, and the test for interactions was not statistically significant in various subgroups. In conclusion, the relationship between blood selenium level and eGFR is non-linear. Blood selenium level is positively related with eGFR when blood selenium level is less than 202 ug/L.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, China
| | - Linglin Jiang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Tian X, Shan X, Ma L, Zhang C, Wang M, Zheng J, Lei R, He L, Yan J, Li X, Bai Y, Hu K, Li S, Niu J, Luo B. Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120727. [PMID: 36427825 DOI: 10.1016/j.envpol.2022.120727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are important risk factors for kidney, but their co-exposure effect on kidney and related mechanism remain unclear. This study evaluated the relationship between heavy metals and renal function, and the feasible mediation effect of oxidative stress. Based on the Dongdagou-Xinglong cohort, participants were recruited and their information were collected through questionnaires and physical examinations. The urine concentration of heavy metals like Cobalt, Nickel, Molybdenum, Cadmium, Antimony, Copper, Zinc, Mercury, Lead, Manganese, and renal injury biomarkers like β2-microglobulin, β-N-Acetylglucosaminidase, retinol-binding protein, 8-hydroxyguanine (8-OHG) were measured and corrected by creatinine. Linear regression was conducted to analyze the relationship between metals and renal biomarkers. Bayesian kernel machine regression, weighted quantile sum and quantile-based g-computation were applied to analyze the association between metal mixtures and renal biomarkers. Finally, the mediating effect of 8-OHG was analyzed through the mediation model. We found that these metals were positively related with renal biomarkers, where copper showed the strongest relationship. The co-exposure models showed that renal biomarkers increased with the concentration of mixtures, particularly for cadmium, copper, mercury, manganese. In addition, the proportion of 8-OHG in mediating effect of metals on renal function ranged from 2.6% to 86.9%. Accordingly, the renal function damage is positively associated with metals, and 8-OHG may play an important mediating role.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaobing Shan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chenyang Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Mei Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanjun Bai
- Silong Township Health Center in Baiyin City, Baiyin, Gansu, 730910, China
| | - Keqin Hu
- Mapo Township Health Center in Lanzhou City, Lanzhou, Gansu, 730115, China
| | - Sheng Li
- Public Health Department, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, 730050, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
16
|
Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191:150-163. [PMID: 36067902 DOI: 10.1016/j.freeradbiomed.2022.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, 10115 Berlin, Germany.
| |
Collapse
|
17
|
Aaseth JO. Toxic and Essential Metals in Human Health and Disease 2021. Biomolecules 2022; 12:biom12101375. [PMID: 36291583 PMCID: PMC9599252 DOI: 10.3390/biom12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway;
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| |
Collapse
|
18
|
Xiong Z, Yang F, Xu T, Yang Y, Wang F, Zhou G, Wang Q, Guo X, Xing C, Bai H, Chen J, Wu Y, Yang S, Cao H. Selenium alleviates cadmium-induced aging via mitochondrial quality control in the livers of sheep. J Inorg Biochem 2022; 232:111818. [DOI: 10.1016/j.jinorgbio.2022.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023]
|