1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Kumar A, Singh A, Sharma VK, Goel A, Kumar A. The upsurge of lytic polysaccharide monooxygenases in biomass deconstruction: characteristic functions and sustainable applications. FEBS J 2024. [PMID: 38291603 DOI: 10.1111/febs.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O2 or H2 O2 in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families. Until now, multiple LPMOs from AA9 and AA10 families, mostly from microbial sources, have been investigated; the exact mechanism and structure-function are elusive to date, and recently discovered AA families of LPMOs are just scratched. This review highlights the origin and discovery of the enzyme, nomenclature, three-dimensional protein structure, substrate specificity, copper-dependent reaction mechanism, and different techniques used to determine the product formation through analytical and biochemical methods. Moreover, the diverse functions of proteins in various biological activities such as plant-pathogen/pest interactions, cell wall remodeling, antibiotic sensitivity of biofilms, and production of nanocellulose along with certain obstacles in deconstructing the complex polysaccharides have also been summarized, while highlighting the innovative and creative ways to overcome the limitations of LPMOs in hydrolyzing the biomass.
Collapse
Affiliation(s)
- Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Aishwarya Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vijay Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Akshita Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Liu Y, Harnden KA, Van Stappen C, Dikanov SA, Lu Y. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Proc Natl Acad Sci U S A 2023; 120:e2308286120. [PMID: 37844252 PMCID: PMC10614608 DOI: 10.1073/pnas.2308286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023] Open
Abstract
The "Histidine-brace" (His-brace) copper-binding site, composed of Cu(His)2 with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Kevin A. Harnden
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Grace Barrios-Gutiérrez S, Inés Vélez-Mercado M, Rodrigues Ortega J, da Silva Lima A, Luiza da Rocha Fortes Saraiva A, Leila Berto G, Segato F. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. BIORESOURCE TECHNOLOGY 2023; 386:129481. [PMID: 37437815 DOI: 10.1016/j.biortech.2023.129481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Basidiomycetes are renowned as highly effective decomposers of plant materials, due to their extensive array of oxidative enzymes, which enable them to efficiently break down complex lignocellulosic biomass structures. Among the oxidative machinery of industrially relevant basidiomycetes, the role of lytic polysaccharide monooxygenases (LPMO) in lignocellulosic biomass deconstruction is highlighted. So far, only a limited number of basidiomycetes LPMOs have been identified and heterologously expressed. These LPMOs have presented activity on cellulose and hemicellulose, as well as participation in the deconstruction of lignin. Expanding on this, the current review proposes both enzymatic and non-enzymatic mechanisms of LPMOs for biomass conversion, considering the significance of the Carbohydrate-Binding Modules and other C-terminal regions domains associated with their structure, which is involved in the deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Solange Grace Barrios-Gutiérrez
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Martha Inés Vélez-Mercado
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Júlia Rodrigues Ortega
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Awana da Silva Lima
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Ana Luiza da Rocha Fortes Saraiva
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gabriela Leila Berto
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
5
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
7
|
Tõlgo M, Hegnar OA, Larsbrink J, Vilaplana F, Eijsink VGH, Olsson L. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:2. [PMID: 36604763 PMCID: PMC9814446 DOI: 10.1186/s13068-022-02255-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous studies have revealed that some Auxiliary Activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) oxidize and degrade certain types of xylans when incubated with mixtures of xylan and cellulose. Here, we demonstrate that the xylanolytic activities of two xylan-active LPMOs, TtLPMO9E and TtLPMO9G from Thermothielavioides terrestris, strongly depend on the presence of xylan substitutions. RESULTS Using mixtures of phosphoric acid-swollen cellulose (PASC) and wheat arabinoxylan (WAX), we show that removal of arabinosyl substitutions with a GH62 arabinofuranosidase resulted in better adsorption of xylan to cellulose, and enabled LPMO-catalyzed cleavage of this xylan. Furthermore, experiments with mixtures of PASC and arabinoglucuronoxylan from spruce showed that debranching of xylan with the GH62 arabinofuranosidase and a GH115 glucuronidase promoted LPMO activity. Analyses of mixtures with PASC and (non-arabinosylated) beechwood glucuronoxylan showed that GH115 action promoted LPMO activity also on this xylan. Remarkably, when WAX was incubated with Avicel instead of PASC in the presence of the GH62, both xylan and cellulose degradation by the LPMO9 were impaired, showing that the formation of cellulose-xylan complexes and their susceptibility to LPMO action also depend on the properties of the cellulose. These debranching effects not only relate to modulation of the cellulose-xylan interaction, which influences the conformation and rigidity of the xylan, but likely also affect the LPMO-xylan interaction, because debranching changes the architecture of the xylan surface. CONCLUSIONS Our results shed new light on xylanolytic LPMO9 activity and on the functional interplay and possible synergies between the members of complex lignocellulolytic enzyme cocktails. These findings will be relevant for the development of future lignocellulolytic cocktails and biomaterials.
Collapse
Affiliation(s)
- Monika Tõlgo
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Olav A. Hegnar
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Johan Larsbrink
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Francisco Vilaplana
- grid.5037.10000000121581746Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden ,grid.5037.10000000121581746Wallenberg Wood Science Centre, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Vincent G. H. Eijsink
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lisbeth Olsson
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
8
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
9
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
10
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
11
|
Rouina H, Tseng YH, Nataraja KN, Uma Shaanker R, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.808430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.
Collapse
|