1
|
Song C, Zheng W, Liu G, Xu Y, Deng Z, Xiu Y, Zhang R, Yang L, Zhang Y, Yu G, Su Y, Luo J, He B, Xu J, Dai H. Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function. Redox Biol 2025; 79:103467. [PMID: 39675068 PMCID: PMC11699297 DOI: 10.1016/j.redox.2024.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
In aging and metabolic disease, sarcopenic obesity (SO) correlates with intramuscular adipose tissue (IMAT). Using bioinformatics analysis, we found a potential target protein Extended Synaptotagmin 1 (E-syt1) in SO. To investigate the regulatory role of E-syt1 in muscle metabolism, we performed in vivo and in vitro experiments through E-syt1 loss- and gain-of-function on muscle physiology. When E-syt1 is overexpressed in vitro, myoblast proliferation, differentiation, mitochondrial respiration, biogenesis, and mitochondrial dynamics are impaired, which were alleviated by the silence of E-syt1. Furthermore, overexpression of E-syt1 inhibited mitophagic flux. Mechanistically, E-syt1 overexpression leads to mitochondrial calcium overload and mitochondrial ROS burst, inhibits the fusion of mitophagosomes with lysosomes, and impedes the acidification of lysosomes. Animal experiments demonstrated the inhibition of E-syt1 increased the capacity of endurance exercise, muscle mass, mitochondrial function, and oxidative capacity of the muscle fibers in OVX mice. These findings establish E-syt1 as a novel contributor to the pathogenesis of skeletal muscle metabolic disorders in SO. Consequently, targeting E-syt1-induced dysfunction may serve as a viable strategy for attenuating SO.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China
| | - Wu Zheng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Guoming Liu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yiyang Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Zhibo Deng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yu Xiu
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rongsheng Zhang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Linhai Yang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yifei Zhang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Guoyu Yu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yibin Su
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Luo
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Bingwei He
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China.
| | - Jie Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| | - Hanhao Dai
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| |
Collapse
|
2
|
D'Elia M, Marino C, Celano R, Napolitano E, D'Ursi AM, Russo M, Rastrelli L. Impact of a Withania somnifera and Bacopa monnieri Formulation on SH-SY5Y Human Neuroblastoma Cells Metabolism Through NMR Metabolomic. Nutrients 2024; 16:4096. [PMID: 39683490 DOI: 10.3390/nu16234096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives: This study investigates the effectiveness of an herbal formulation, STRESSLESS (ST-65), which combines ashwagandha (Withania somnifera) and bacopa (Bacopa monnieri), on SH-SY5Y human neuroblastoma cells. Given the rising interest in natural compounds for neuroprotection and stress alleviation, we aimed to explore the cellular and molecular effects of this formulation. Methods: Utilizing a nuclear magnetic resonance (NMR) metabolomic approach and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS), we identified key bioactive compounds in ST-65, including withanolides from ashwagandha and bacosides from bacopa. Results: Our findings indicate that ST-65 treatment significantly alters the metabolic profile of SH-SY5Y cells. Key changes included increased levels of metabolites linked to neuroprotection, energy metabolism, and antioxidant defense. Notable enhancements were observed in specific amino acids and neuroprotective compounds, suggesting activation of neuroprotective mechanisms and mitigation of stress-induced damage. Conclusions: The study reveals a complex phyto-chemical profile of ST-65 and underscores its potential as a natural active agent for addressing stress-related neurodegenerative conditions. These insights into neuronal mechanisms provide a foundation for further exploration of herbal formulations in neuroprotection.
Collapse
Affiliation(s)
- Maria D'Elia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- National Biodiversity Future Center-NBFC, 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90123 Palermo, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- National Biodiversity Future Center-NBFC, 90133 Palermo, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- National Biodiversity Future Center-NBFC, 90133 Palermo, Italy
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- National Biodiversity Future Center-NBFC, 90133 Palermo, Italy
| |
Collapse
|
3
|
Mishra DN, Kumar M. Shoden promotes Relief from stress and anxiety: A randomized, double-blind, placebo-controlled study on healthy subjects with high stress levels. Heliyon 2024; 10:e36885. [PMID: 39286132 PMCID: PMC11402924 DOI: 10.1016/j.heliyon.2024.e36885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Background This randomized placebo-controlled study examined the effect of ashwagandha root and leaf extract 60 mg (AE60) and 120 mg (AE120) (35 % withanolide glycosides, Shoden) in physically healthy subjects with higher stress and anxiety. It is hypothesized that a low dose extract with higher withanolide glycosides would decrease cortisol and increase testosterone thereby reducing stress and anxiety. Methods This parallel arm study recruited 60 subjects with an allocation ratio of 1:1:1 (AE60:AE120: placebo) for 60 days. Subjects who fulfilled the DSM -IV Criteria for generalized anxiety disorder (GAD) with a Hamilton Anxiety Rating Scale, HAMA score >20, and morning serum cortisol >25 mcg/dl were included in the study. The participants did not have depression symptoms and were screened using Montgomery-Asberg Depression Rating Scale. The primary outcome measure was HAMA and the secondary measures were morning serum cortisol, testosterone, perceived stress scale (PSS), clinical global impressions scale (CGI), and patient's global impression of change scale (PGIC). Results After 60 days, significant differences were observed between the treatment groups and placebo. HAMA scores decreased by 59 % in both AE60 and AE120 groups compared to a negligible increase of 0.83 % in the placebo group (p < 0.0001). Morning serum cortisol levels decreased by 66 % in AE60 and 67 % in AE120, compared to a 2.22 % change in the placebo group (p < 0.0001). Testosterone levels increased by 22 % in AE60 and 33 % in AE120, compared to a 4 % increase in males in the placebo group (p < 0.0001). PSS scores decreased by 53 % in AE60 and 62 % in AE120, CGI-severity scores decreased by 72 % in AE60 and 68 % in AE120, and PGIC scores improved by 60 % in both AE60 and AE120 groups, all showing significant differences compared to the placebo group. Conclusion Ashwagandha extract with 35 % withanolide glycosides (Shoden) at 60 mg and 120 mg was significantly effective in reduced morning serum cortisol and increasing total testosterone. Therefore, it can be recommended for reducing high stress and anxiety. Clinical trial registration The study was prospectively registered in Clinical Trial Registry, India with registration number CTRI/2022/04/042133 [Registered on: April 25, 2022].
Collapse
Affiliation(s)
- Deo Nidhi Mishra
- Department of Internal Medicine, Nirmal Hospital, Jhansi, Uttar Pradesh, 284128, India
| | - Manoj Kumar
- Department of Internal Medicine, Nirmal Hospital, Jhansi, Uttar Pradesh, 284128, India
| |
Collapse
|
4
|
Wadhwa R, Wang J, Shefrin S, Zhang H, Sundar D, Kaul SC. Molecular Insights into the Anticancer Activity of Withaferin-A: The Inhibition of Survivin Signaling. Cancers (Basel) 2024; 16:3090. [PMID: 39272948 PMCID: PMC11394585 DOI: 10.3390/cancers16173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to the high cost and adverse side effects of synthetic drugs, natural compounds with similar activity have also been in demand. In this study, we conducted molecular docking assays to evaluate the ability of Wi-A and Wi-N to block Survivin dimerization. We found that Wi-A, but not Wi-N, can bind to and prevent the homodimerization of Survivin, similar to YM-155. Therefore, we prepared a Wi-A-rich extract from Ashwagandha leaves (Wi-AREAL). Experimental analyses of human cervical carcinoma cells (HeLa and ME-180) treated with Wi-AREAL (0.05-0.1%) included assessments of viability, apoptosis, cell cycle, migration, invasion, and the expression levels (mRNA and protein) of molecular markers associated with these phenotypes. We found that Wi-AREAL led to growth arrest mediated by the upregulation of p21WAF1 and the downregulation of several proteins (CDK1, Cyclin B, pRb) involved in cell cycle progression. Furthermore, Wi-AREAL treatment activated apoptosis signaling, as evidenced by reduced PARP-1 and Bcl-2 levels, increased procaspase-3, and elevated Cytochrome C. Additionally, treating cells with a nontoxic low concentration (0.01%) of Wi-AREAL inhibited migration and invasion, as well as EMT (epithelial-mesenchymal transition) signaling. By combining computational and experimental approaches, we demonstrate the potential of Wi-A and Wi-AREAL as natural inhibitors of Survivin, which may be helpful in cancer treatment.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560-100, India
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| |
Collapse
|
5
|
Raut A, Tripathi R, Marathe PA, Uchil DA, Agashe S, Rege N, Vaidya AB. Evaluation of Withania somnifera (L.) Dunal (Ashwagandha) on Physical Performance, Biomarkers of Inflammation, and Muscle Status in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled Study. Cureus 2024; 16:e68940. [PMID: 39381480 PMCID: PMC11460434 DOI: 10.7759/cureus.68940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Sarcopenia is associated with chronic inflammation, a sedentary lifestyle, and ageing. However, there exists no drug, which is safe and effective for long-term use. Ashwagandha (Withaniasomnifera (L.) Dunal) has the potential to fill this therapeutic gap based on its efficacy and safety profile; hence, the present study was planned to evaluate its effect on inflammatory biomarkers and muscle status in healthy volunteers. METHODOLOGY A prospective, double-blind, randomized, placebo-controlled clinical study was conducted to evaluate the effects of Ashwagandha extract in healthy volunteers (February 2021 to May 2022) who received either Ashwagandha extract tablets 250 mg or a placebo twice daily for 60 days. The physical performance on a bicycle ergometer, inflammatory/muscle status biomarkers, body composition, reaction time, hemogram, and organ function tests was assessed at baseline, day 30, and day 60. RESULTS In the Ashwagandha group, there was a statistically significant (p<0.05) improvement in total distance travelled (Ashwagandha 2.85 ± 0.54 km vs placebo 2.16 ± 0.62 km), average speed achieved (Ashwagandha 25.6 ± 5.7 km/hour vs placebo 22.2 ± 5.48 km/hour) on a bicycle ergometer from the baseline visit (V3) to the last visit (V7) as compared to the placebo group. The observations on hand-grip strength, back-leg press, skeletal muscle mass, and VO2 max showed an increasing trend from V3 to V7, whereas the results of the three inflammatory markers (hs-C-reactive protein (CRP) mg/L; IL-6; TNF-alpha ) and the muscle marker (myostatin) revealed a decreasing trend from V3 to V7 in the Ashwagandha group. Ashwagandha extract was found to be safe in healthy volunteers as evidenced by the clinical profile, laboratory investigations, and reaction time test. CONCLUSION Ashwagandha extract supplementation was safe and effective in enhancing physical performance and strengthening muscle mass and could be a potential candidate for treating sarcopenia.
Collapse
Affiliation(s)
- Ashwinikumar Raut
- Clinical Research and Integrative Medicine Department, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| | - Raakhi Tripathi
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Padmaja A Marathe
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Dinesh A Uchil
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Shubhada Agashe
- Clinical and Endocrine Laboratory, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| | - Nirmala Rege
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Ashok B Vaidya
- Internal Medicine Department, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| |
Collapse
|
6
|
Gopalaiah SB, Jayaseelan K. Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides - A Comprehensive Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38300174 DOI: 10.1080/10408347.2024.2307887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
7
|
Ko JS, Chang BY, Choi YJ, Choi JS, Kwon HY, Lee JY, Kim SY, Choung SY. Ashwagandha Ethanol Extract Attenuates Sarcopenia-Related Muscle Atrophy in Aged Mice. Nutrients 2024; 16:157. [PMID: 38201986 PMCID: PMC10781061 DOI: 10.3390/nu16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1β, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.
Collapse
Affiliation(s)
- Jin-Sung Ko
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Young-Ju Choi
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Ji-Soo Choi
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Hee-Yeon Kwon
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Jae-Yeon Lee
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Se-Young Choung
- Department of Preventive Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
9
|
Zhang H, Wang J, Prakash J, Zhang Z, Kaul SC, Wadhwa R. Three-Way Cell-Based Screening of Antistress Compounds: Identification, Validation, and Relevance to Old-Age-Related Pathologies. J Gerontol A Biol Sci Med Sci 2023; 78:1569-1577. [PMID: 37061830 DOI: 10.1093/gerona/glad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
A variety of environmental stress stimuli have been linked to poor quality of life, tissue dysfunctions, and ailments including metabolic disorders, cognitive impairment, and accelerated aging. Oxidative, metal, and hypoxia stresses are largely associated with these phenotypes. Whereas drug development and disease therapeutics have advanced remarkably in last 3 decades, there are still limited options for stress management. Because the latter can effectively decrease the disease burden, we performed cell-based screening of antistress compounds by recruiting 3 chemical models of oxidative (paraquat), metal (cadmium nitrate), or hypoxia (cobalt chloride) stresses. The screening of 70 compounds for their ability to offer protection against oxidative, metal, and hypoxia stresses resulted in the selection of 5 compounds: Withaferin-A (Wi-A), methoxy Withaferin-A (mWi-A), Withanone (Wi-N), triethylene glycol (TEG), and Ashwagandha (Withania somnifera) leaf M2-DMSO extract (M2DM). Molecular assays revealed that whereas stress caused increase in (a) apoptosis, (b) reactive oxygen species accumulation coupled with mitochondrial depolarization, (c) DNA double-strand breaks, and (d) protein aggregation, low nontoxic doses of the selected compounds caused considerable protection. Furthermore, Wi-N, TEG, and their mixture-treated normal human fibroblasts (at young, mature, and senescent stages representing progressively increasing accumulation of stress) showed increase in proliferation. Taken together, these results suggested 3-way (oxidative, metal, and hypoxia) antistress potential of Wi-N and TEG that may be useful for management of environmental and old-age-related pathologies.
Collapse
Affiliation(s)
- Huayue Zhang
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AIST-INDIA DAILAB, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jay Prakash
- AIST-INDIA DAILAB, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
10
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|