1
|
Duyvesteyn HME, Dijokaite-Guraliuc A, Liu C, Supasa P, Kronsteiner B, Jeffery K, Stafford L, Klenerman P, Dunachie SJ, Mongkolsapaya J, Fry EE, Ren J, Stuart DI, Screaton GR. Concerted deletions eliminate a neutralizing supersite in SARS-CoV-2 BA.2.87.1 spike. Structure 2024; 32:1594-1602.e6. [PMID: 39173622 DOI: 10.1016/j.str.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BA.2.87.1 represents a major shift in the BA.2 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is unusual in having two lengthy deletions of polypeptide in the spike (S) protein, one of which removes a beta-strand. Here we investigate its neutralization by a variety of sera from infected and vaccinated individuals and determine its spike (S) ectodomain structure. The BA.2.87.1 receptor binding domain (RBD) is structurally conserved and the RBDs are tightly packed in an "all-down" conformation with a small rotation relative to the trimer axis as compared to the closest previously observed conformation. The N-terminal domain (NTD) maintains a remarkably similar structure overall; however, the rearrangements resulting from the deletions essentially destroy the so-called supersite epitope and eliminate one glycan site, while a mutation creates an additional glycan site, effectively shielding another NTD epitope. BA.2.87.1 is relatively easily neutralized but acquisition of additional mutations in the RBD could increase antibody escape allowing it to become a dominant sub-lineage.
Collapse
Affiliation(s)
- Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK
| | - Aiste Dijokaite-Guraliuc
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Ciccozzi M, Pascarella S. Two sides of the same coin: the N-terminal and the receptor binding domains of SARS-CoV-2 Spike. Future Virol 2023:10.2217/fvl-2022-0181. [PMID: 36896145 PMCID: PMC9987531 DOI: 10.2217/fvl-2022-0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
The SARS-CoV-2 Spike receptor binding domain and N-terminal domain interact with each other in an intricate mechanism. Mutations modulate the interplay between the Spike and host molecules. This editorial comments on the intricacies of SARS-CoV-2 Spike interactions.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Medical Statistic & Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences 'A Rossi Fanelli', Sapienza Università di Roma, Rome, 00185, Italy
| |
Collapse
|
4
|
Abidi M, Soheilifard R, Ghasemi RH. Comparison of the unbinding process of RBD-ACE2 complex between SARS-CoV-2 variants (Delta, delta plus, and Lambda): A steered molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohadese Abidi
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Soheilifard
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
5
|
D’Arminio N, Giordano D, Scafuri B, Biancaniello C, Petrillo M, Facchiano A, Marabotti A. In Silico Analysis of the Effects of Omicron Spike Amino Acid Changes on the Interactions with Human Proteins. Molecules 2022; 27:molecules27154827. [PMID: 35956778 PMCID: PMC9370001 DOI: 10.3390/molecules27154827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
The SARS-CoV-2 variant Omicron is characterized, among others, by more than 30 amino acid changes occurring on the spike glycoprotein with respect to the original SARS-CoV-2 spike protein. We report a comprehensive analysis of the effects of the Omicron spike amino acid changes in the interaction with human antibodies, obtained by modeling them into selected publicly available resolved 3D structures of spike–antibody complexes and investigating the effects of these mutations at structural level. We predict that the interactions of Omicron spike with human antibodies can be either negatively or positively affected by amino acid changes, with a predicted total loss of interactions only in a few complexes. Moreover, our analysis applied also to the spike-ACE2 interaction predicts that these amino acid changes may increase Omicron transmissibility. Our approach can be used to better understand SARS-CoV-2 transmissibility, detectability, and epidemiology and represents a model to be adopted also in the case of other variants.
Collapse
Affiliation(s)
- Nancy D’Arminio
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (N.D.); (B.S.)
| | - Deborah Giordano
- National Research Council, Institute of Food Science, 83100 Avellino, Italy;
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (N.D.); (B.S.)
| | - Carmen Biancaniello
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80128 Naples, Italy;
| | | | - Angelo Facchiano
- National Research Council, Institute of Food Science, 83100 Avellino, Italy;
- Correspondence: (A.F.); (A.M.)
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (N.D.); (B.S.)
- Correspondence: (A.F.); (A.M.)
| |
Collapse
|
6
|
Pascarella S, Bianchi M, Giovanetti M, Narzi D, Cauda R, Cassone A, Ciccozzi M. The SARS-CoV-2 mu variant shouldn't be left aside: it warrants attention for its immuo-escaping ability. J Med Virol 2022; 94:2479-2486. [PMID: 35174519 PMCID: PMC9088528 DOI: 10.1002/jmv.27663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
The COVID‐19 pandemic continues to have a threatening impact on a global scale, largely due to the emergence of newly SARS‐CoV‐2 variants. The Mu (PANGO lineage B.1.621), was first identified in Colombia in January 2021 and was classified as a variant of interest (VOI) in August 2021, due to a constellation of mutations that likely‐mediate an unexpectedly enhanced immune resistance to inactivated vaccine‐elicited antibodies. Despite recent studies suggesting that the Mu variant appears to have less infectivity than the Delta variant, here we examined the structural effect of the Mu spike protein mutations and predicted the potential impact on infectivity of the Mu variant compared with the Delta and Delta plus spike protein. The Mu variant showed enhanced immune resistance to inactivated vaccine‐elicited antibodies. The molecular dynamics experiment suggests Delta relies mainly on electrostatic interaction while Mu prefers Van der Waals stabilization with ACE2. Mu and Delta Spike are predicted to have a similar affinity for ACE2 although Delta privileges electrostatic binding.
Collapse
Affiliation(s)
- Stefano Pascarella
- Dipartimento di Scienze biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Roma
| | - Martina Bianchi
- Dipartimento di Scienze biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Roma
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy.,Federal University of Minas Gerais, Brazil
| | - Daniele Narzi
- Dept. of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | | | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, Rome, Italy
| |
Collapse
|