1
|
Lin XX, Yang PQ, Li XJ, Xu ZZ, Wu HT, Hu SM, Yang XL, Ding Y, Yu WZ. Network pharmacology‑based analysis and in vitro experimental verification of the inhibitory role of luteoloside on gastric cancer cells via the p53/p21 pathway. Oncol Lett 2025; 29:76. [PMID: 39650229 PMCID: PMC11622105 DOI: 10.3892/ol.2024.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024] Open
Abstract
The present study aimed to investigate the inhibitory effect of luteoloside on the proliferation, migration and invasion of gastric cancer (GC) cells based on network pharmacology and in vitro experiments. GC-associated targets were obtained from the GeneCards and Online Mendelian Inheritance in Man databases. Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks and herb-active ingredient-target gene-signaling pathway networks were constructed using the Search Tool for the Retrieval of Interacting Genes and proteins and Cytoscape software to analyze core target genes and pathways. In addition, the alkaline comet assay was performed to assess DNA damage, demonstrating that luteoloside induces DNA double-strand breaks in a concentration-dependent manner, as indicated by increased comet tail lengths. γ-H2AX detection through western blot analysis further corroborated these findings, showing significant upregulation of this DNA damage marker in luteoloside-treated GC cells. The human GC cell line NCI-N87 was utilized for in vitro experiments to investigate the impact of different doses of luteoloside on cell proliferation, invasion and migration using Cell Counting Kit-8, scratch-wound and Transwell assays, respectively. The underlying molecular mechanism of luteoloside was explored using western blot analysis. The successfully constructed PPI network revealed the p53, Akt1, Bcl-2 and Caspase-3 proteins as the core targets, all of which showed good binding activity with luteoloside. The in vitro experiments demonstrated that luteoloside treatment significantly inhibited GC-cell proliferation, migration and invasion. The western blot results showed notable concentration-dependent upregulation of p53 and p21 protein expression and downregulation of Bcl-2 protein expression following luteoloside treatment. Overall, luteoloside inhibited the proliferation, migration and invasion of GC cells by activating the p53/p21 signaling pathway.
Collapse
Affiliation(s)
- Xin-Xing Lin
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Pei-Qing Yang
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Xiao-Jun Li
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Zhong-Zhen Xu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Hai-Tao Wu
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Shun-Ming Hu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Xiao-Lei Yang
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Yong Ding
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Wei-Zhou Yu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| |
Collapse
|
2
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
3
|
Juárez-Velázquez T, González-Garrido JA, Sánchez-Lombardo I, Jiménez-Pérez NDC, Olivares-Corichi IM, García-Sánchez JR, Hernández-Abreu O. Untargeted metabolic analysis of Epaltes mexicana by LC-QTOF-MS: Terpenes with activity against human cancer cell lines. Fitoterapia 2024; 179:106194. [PMID: 39216676 DOI: 10.1016/j.fitote.2024.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Epaltes mexicana is a plant widely used in traditional medicine and as a food in Mexico; however, its phytochemical and pharmacological studies are limited. This study aimed to identify the active secondary metabolites of Epaltes mexicana and determine its cytotoxic activity on cancer cell lines. Three organic extracts were obtained by maceration using n-hexane, dichloromethane, and methanol. The n-hexane extract was fractioned by simple column chromatography. Eight terpenes were annotated in collection 6 (C6) by LC-QTOF-MS using a gradient elution and Electrospray Ionization (ESI) in positive ion mode: 1) Gibberellin A15, 2) farfugin A, 3) dehydromyodesmone, 4) eremopetasitenin A1, 5) hydroxyisonobilin, 6) anhydrocinnzeylanine, 7) nigakilactone H and 8) taxodione. On the other hand, C6 showed a concentration-dependent cytotoxic effect on cancer cell lines MCF-7 (Emax = 74.69 ± 6.19 % and IC50 = 6.31 μg/mL), MDA-MB-231 (Emax = 79.28 ± 12.12 % and IC50 = 124.21 μg/mL), and SiHa (Emax = 82.96 ± 6.02 % and IC50 = 124.31 μg/mL). The C6 did not show a cytotoxic effect against DU-145 and non-cancerous cells from the mammary glands MCF-10A. These results indicate cytotoxic specificity on cancer cell lines and support the hypothesis that terpenes identified in E. mexicana must be investigated and developed for non-clinical and clinical trials as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Tamara Juárez-Velázquez
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico
| | - José Arnold González-Garrido
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico
| | - Irma Sánchez-Lombardo
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico
| | - Nelly Del Carmen Jiménez-Pérez
- Herbario UJAT, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km. 0.5 S/N, Entronque a Bosques de Saloya, Villahermosa, Tabasco, Mexico
| | - Ivonne María Olivares-Corichi
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, Mexico
| | - José Rubén García-Sánchez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, Mexico
| | - Oswaldo Hernández-Abreu
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1 Col. La Esmeralda, Cunduacán 86690, Tabasco, Mexico.
| |
Collapse
|
4
|
Zhang W, Gao K, Bai Y, Xu D, Zhao M, Tao X, Wang J. Wedelolactone Attenuates Liver Fibrosis and Hepatic Stellate Cell Activation by Suppressing the Hippo Pathway. Rejuvenation Res 2024; 27:207-219. [PMID: 39276092 DOI: 10.1089/rej.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Liver fibrosis is a commonly observed pathological phenomenon that occurs during the progression of various types of chronic liver diseases. The Hippo pathway is closely associated with the pathogenesis of liver fibrosis. Previous studies have shown that wedelolactone (WED) has a significant antihepatic fibrosis effect, whereas the target and mechanism underlying WED remain elusive. In this study, we found that WED significantly alleviated liver fibrosis and injury by inhibiting the expression of Yes-associated protein (YAP) and tafazzin (TAZ). In an in vitro model, WED suppressed the activation of hepatic stellate cells (HSCs) induced by transforming growth factor (TGF-β1), as well as the mRNA and protein expression of α-smooth muscle actin (α-SMA), YAP, and TAZ. The allosteric regulation of YAP by WED was confirmed using MD and cellular thermal shift assay. Moreover, specific knockdown or inhibition of YAP did not enhance the suppressive effect of WED on HSC activation or protein expression associated with fibrosis. These findings demonstrated that the administration of WED effectively alleviated liver fibrosis by suppressing the Hippo/YAP/TAZ pathways. In addition, YAP activity may be regulated by WED via allosteric regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Giang LT, Park S, Cuc NT, Tai BH, Kiem PV, Hang NTM, Ban NK, Cuong PV, Nhiem NX. Bithiophene and coumestan derivatives from Eclipta prostrata (L.) L. and their hepatoprotective activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1381-1387. [PMID: 38869195 DOI: 10.1080/10286020.2024.2364912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
One new bithiophene derivative, 5-(but-3-en-1-yn-1-yl)-5'-(methoxymethyl)-2,2'-bithiophene (1), along with twelve known compounds, senecioester (2), tiglinsaureester (3), 5-acetoxymethyl-2'-(but-3-en-1-yn-1-yl)-2,5'-bithiophene (4), 5-(4-isovaleroyloxybut-1-ynyl)-2,2'-bithiophene (5), 5-hydroxymethyl-(2,5':2',5'')-terthienyl tiglate (6), 5-hydroxymethyl-(2,5':2',5'')-terthienyl agelate (7), 5- hydroxymethyl-2,5':2',5''-terthiophene dimethylacrylate (8), 5-methoxymethyl-2,2':5',2''-terthiophene (9), α-terthiophene (10), 1,3,8,9-tetrahydroxycoumestan 3-sulfate (11), demethylwedelolactone (12), and wedelolactone (13) were isolated from the methanol extract of aerial parts of Eclipta prostrata (L.) L. All isolated compounds were evaluated for the protective ability on the HepG2 cells. At the concentration of 100 μM, compounds 11-13 showed the highest hepatoprotective effects, with HepG2 cell viability ranging from 38.68% to 48.54%. Bithiophenes showed higher hepatoprotective cell viability than terthiophenes.
Collapse
Affiliation(s)
- Le Thi Giang
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Nguyen Thi Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Thi Minh Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Ninh Khac Ban
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Van Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
6
|
Wang W, Wang H, Luo Y, Li Z, Li J. Discovery of petroleum ether extract of eclipta targeting p53/Fas pathway for the treatment of chemotherapy-induced alopecia: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118405. [PMID: 38844249 DOI: 10.1016/j.jep.2024.118405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ecliptea herba, a traditional Chinese herbal medicine for hair loss, was first recorded in the Tang Dynasty's 'Qian Jin Yue Ling', of which the active ingredients and mechanisms of action in the treatment of chemotherapy-induced hair loss remain poorly investigated. AIM OF THE STUDY To investigate the effects of the petroleum ether extract of Eclipta (PEE) on alopecia and follicle damage and elucidate its potential therapeutic mechanisms using the integration of network pharmacology, bioinformatics, and experimental validation. MATERIALS AND METHODS UPLC-MS was used to analyse the chemical composition of PEE. A network pharmacology approach was employed to establish the 'components-targets-pathways' network of PEE to explore potential therapeutic pathways and targets. Molecular docking was used for validation, and the mechanism of PEE in treating chemotherapy-induced alopecia (CIA) was elucidated using in vitro and in vivo on CIA models. RESULTS UPLC-MS analysis of PEE revealed 185 components, while network pharmacology and molecular docking analyses revealed potential active compounds and their target molecules, suggesting the involvement of core genes, such as TP53, ESR1, AKT1, IL6, TNF, and EGFR. The key components included wedelolactone, dimethyl-wedelolactone, luteoloside, linarin, and hispidulin. In vivo, PEE promoted hair growth, restored the number of hair follicles, and reduced follicle apoptosis. Conversely, in vitro, PEE enhanced cell viability, reduced apoptosis, and protected HaCaT cells from damage induced by 4-hydroperoxycyclophosphamide (4-HC). CONCLUSIONS PEE alleviated hair follicle damage in CIA mice by inhibiting the P53/Fas pathway, which may be associated with inhibiting hair follicle cell apoptosis. This study provides a novel therapeutic strategy for treating cyclophosphamide-induced hair loss.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yang Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
7
|
Sato R, Nishidono Y, Tanaka K. Comprehensive Analysis of Sulfated Flavonoids in Eclipta prostrata for Quality Evaluation. Molecules 2024; 29:4888. [PMID: 39459257 PMCID: PMC11509997 DOI: 10.3390/molecules29204888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Eclipta prostrata (Asteraceae) is employed as a hemostatic agent in many traditional medicines, owing to its sulfated flavonoid content. In this study, we obtained crude drug samples from three provinces collected in different years and analyzed their sulfated flavonoid contents using liquid chromatography-mass spectrometry (LC-MS) for quality evaluation. Because sulfated flavonoids are unstable and difficult to isolate from extracts, this study first synthesized a variety of sulfated flavonoids and accumulated spectral data in order to identify the compounds in E. prostrata. The LC-MS analysis of six crude drug samples revealed the presence of luteolin 7-sulfate, apigenin 7-sulfate, diosmetin 7-sulfate, and diosmetin 3'-sulfate. The samples without luteolin 3'-sulfate featured high apigenin 7-sulfate content. Although the samples were collected from the same locality, their compositions differed depending on the year of collection. Further, they were classified according to three patterns: (1) samples with luteolin 7-sulfate as the main component, (2) samples with apigenin 7-sulfate as the main component, and (3) samples with relatively high diosmetin sulfate content. Luteolin 7-sulfate typically exhibits relatively high erythrocyte aggregation efficiency and fibrinogen aggregation rate. These results demonstrate that the analysis of sulfated flavonoids is beneficial for the quality evaluation of E. prostrata for hemostatic applications.
Collapse
Affiliation(s)
- Ryunosuke Sato
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (R.S.); (Y.N.)
| |
Collapse
|
8
|
Wyżgoł M, Nasreldein M, Ryś-Jarmużek A. The High-Resolution Archaeology of Shared Courtyards at Old Dongola (14th-16th Century a.d., Sudan): an Intensive Approach to Domestic Open Spaces. JOURNAL OF FIELD ARCHAEOLOGY 2024; 49:692-712. [PMID: 39564574 PMCID: PMC11573317 DOI: 10.1080/00934690.2024.2397883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Identifying the dynamics of domestic open spaces remains a challenging task. This research applies an adjusted theoretical framework of activity areas to characterize domestic open spaces in the 14th-16th century a.d. in Old Dongola, Sudan. Activity areas were defined as sedimentations of residues of recurring cycles of changing actions rather than stable components of space. To identify domestic space, this research utilizes high-resolution methods: analyses of multiple chemical elements, spatial distribution of objects, and botanical remains of courtyard occupational surfaces, combined with spatial statistics using local Moran's I autocorrelation. The relationships between the remains of human and non-human actions are discussed in terms of the material affordances affecting their deposition within the archaeological layers. Application of these methods allowed for the identification of areas of domestic tasks related to high concentrations of elements, as well as clusters of tools located on their edges. Botanical data corroborated often vague identifications of activities based on geochemistry.
Collapse
Affiliation(s)
| | - Mohammed Nasreldein
- University of Tübingen, Tübingen, Germany
- University of Gezira, Wad Madani, Sudan
| | | |
Collapse
|
9
|
Li H, Hou M, Zhang P, Ren L, Guo Y, Zou L, Cao J, Bai Z. Wedelolactone suppresses breast cancer growth and metastasis via regulating TGF-β1/Smad signaling pathway. J Pharm Pharmacol 2024; 76:1038-1050. [PMID: 38848454 DOI: 10.1093/jpp/rgae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Breast cancer is a malignant tumor with high invasion and metastasis. TGF-β1-induced epithelial-mesenchymal transition (EMT) is crucially involved in the growth and metastasis of breast cancer. Wedelolactone (Wed) is extracted from herbal medicine Ecliptae Herba, which is reported to have antineoplastic activity. Here, we aimed to elucidate the efficacy and mechanism of Wed against breast cancer. METHODS The effects of Wed on migration and invasion of 4T1 were detected. The expression of EMT-related markers was detected by Western blot and qPCR. The 4T1 orthotopic murine breast cancer model was established to evaluate the therapeutic effect of Wed on the growth and metastasis of breast cancer through TGF-β1/Smad pathway. RESULTS Wed inhibited the proliferation, migration and invasion of 4T1. It exhibited concentration-dependent inhibition of p-Smad2/3. Wed also reversed the expression of EMT-markers induced by TGF-β1. In addition, Wed suppressed the growth and metastasis of breast cancer in mice. It also affected p-Smad3 expression as well as EMT-related genes, suggesting that its anti-breast cancer effect may be related to the TGF-β1/Smad pathway. CONCLUSION Wed reverses EMT by regulating TGF-β1/Smad pathway, potentially serving as a therapeutic agent for breast cancer. Wed is expected to be a potential drug to inhibit TGF-β1/Smad pathway-related diseases.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Lutong Ren
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot 010010, China
| | - Yuanyuan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
10
|
Sumi MJ, Zaman SB, Imran S, Sarker P, Rhaman MS, Gaber A, Skalicky M, Moulick D, Hossain A. An investigation of the pigments, antioxidants and free radical scavenging potential of twenty medicinal weeds found in the southern part of Bangladesh. PeerJ 2024; 12:e17698. [PMID: 39071122 PMCID: PMC11276756 DOI: 10.7717/peerj.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Despite their overlooked status, weeds are increasingly recognized for their therapeutic value, aligning with historical reliance on plants for medicine and nutrition. This study investigates the medicinal potential of native weed species in Bangladesh, specifically pigments, antioxidants, and free radical scavenging abilities. Twenty different medicinal weed species were collected from the vicinity of Khulna Agricultural University and processed in the Crop Botany Department Laboratory. Pigment levels were determined using spectrophotometer analysis, and phenolics, flavonoids, and DPPH were quantified accordingly. Chlorophyll levels in leaves ranged from 216.70 ± 9.41 to 371.14 ± 28.67 µg g-1 FW, and in stems from 51.98 ± 3.21 to 315.89 ± 17.19 µg g-1 FW. Flavonoid content also varied widely, from 1,624.62 ± 102.03 to 410.00 ± 115.58 mg CE 100 g-1 FW in leaves, and from 653.08 ± 32.42 to 80.00 ± 18.86 mg CE 100 g-1 FW in stems. In case of phenolics content Euphorbia hirta L. displaying the highest total phenolic content in leaves (1,722.33 ± 417.89 mg GAE 100 g-1 FW) and Ruellia tuberosa L. in stems (977.70 ± 145.58 mg GAE 100 g-1 FW). The lowest DPPH 2.505 ± 1.028 mg mL-1was found in Heliotropium indicum L. leaves. Hierarchical clustering links species with pigment, phenolic/flavonoid content, and antioxidant activity. PCA, involving 20 species and seven traits, explained 70.07% variability, with significant PC1 (14.82%) and PC2 (55.25%). Leaves were shown to be superior, and high-performing plants such as E. hirta and H. indicum stood out for their chemical composition and antioxidant activity. Thus, this research emphasizes the value of efficient selection while concentrating on the therapeutic potential of native weed species.
Collapse
Affiliation(s)
- Mousumi Jahan Sumi
- Department of Crop Botany, Khulna Agricultural University, Khulna, Bangladesh
| | - Samia Binta Zaman
- Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Prosenjit Sarker
- Department of Crop Botany, Khulna Agricultural University, Khulna, Bangladesh
| | - Mohammad Saidur Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ahmed Gaber
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Rangpur, Bangladesh
| |
Collapse
|
11
|
Linh NN, Manh VQ, Chau Giang L, Chinh NT, Dung HT, Thuy Duong TT, Hoang T, Trung VQ. Assessment of hemostatic ability of biomaterial based on chitosan and Eclipta prostrataL. extract. Biomed Mater 2024; 19:035026. [PMID: 38537280 DOI: 10.1088/1748-605x/ad386e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The biomaterials based on chitosan andEclipta prostrataL. extract have been prepared by microemulsion method and solution method (with and without sodium tripolyphosphate (STPP) as a cross-linking agent). The main component inEclipta prostrataL. extract is flavonoid groups. The structure of the chitosan/extract biomaterials was studied by infrared spectroscopy. The chitosan/extract biomaterial using STPP cross-linker appeared an absorption band at 1152 cm-1attributed to the vibrations of C-O-P bonds, which proved that chitosan has crosslinked with STPP. The morphology of the biomaterials was investigated by the dynamic light scattering technique and field emission scanning electron microscopy. The obtained results showed that the particle size of the chitosan/extract biomaterials prepared by microemulsion method and solution method with STPP ranged from 68.06 nm to 1484 nm, with an average particle size of 304.9-1019 nm. The microemulsion method produced biomaterials with much smaller average particle size than the solution method using cross-linkers. The hemostatic ability of the biomaterials was better than that of the control sample based on the time of blood clotting formation and glomerular aggregation ability. The sample with the ratio ofE. prostrataL. extract: chitosan of 1:30 had the lowest hemostasis time (6 min 46 s) and its glomerular aggregation rate after 5 min was 13.05%. This indicated that the biomaterials based on chitosan andE. prostrataL. extract are promising for application in biomedicine as hemostatic materials.
Collapse
Affiliation(s)
- Nguyen Ngoc Linh
- Faculty of Pharmacy, Thanh Do University, Kim Chung, Hoai Duc, Hanoi 10000, Vietnam
| | - Vu Quoc Manh
- Faculty of Pharmacy, Thanh Do University, Kim Chung, Hoai Duc, Hanoi 10000, Vietnam
| | - La Chau Giang
- Hanoi-Amsterdam High School for the Gifted, 1 Hoang Minh Giam, Cau Giay, Hanoi 10000, Vietnam
| | - Nguyen Thuy Chinh
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Hoang Tran Dung
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | | - Thai Hoang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Vu Quoc Trung
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
12
|
Rani S, Sharma U, Deshmukh MP, Kumar V, Sharma KC, Malik M, Subramaniyan V. Immunomodulatory and AntiOxidant Potential of Polyherbal Dhatryadi Rasayana in the Form of Churna and Granules. ACS OMEGA 2024; 9:14781-14790. [PMID: 38585048 PMCID: PMC10993241 DOI: 10.1021/acsomega.3c06784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2024]
Abstract
Dhatryadi Rasayana revitalizes the human body and helps in maintaining health with the elimination of ill effects of various diseases. The effective delivery systems for Rasayana may affect the profound effect of active principles in the body. The present study deals with investigation and evaluation of phytochemical constituents, physicochemical characteristics, along with antioxidant and immunomodulatory effects of Dhatryadi Rasayana in churna (powder) and granule formulations. Dhatryadi Rasayana churna and its granules were studied for various physicochemical parameters, e.g., moisture content, ash-value, acid-insoluble ash content, water-soluble extractive, alcohol-soluble extractive, bulk density, tapped density, angle of repose, Carr's index, Hausner's ratio, total sugar, reducing sugar, non-reducing sugar, heavy metals, total microbial load, etc. In vitro antioxidant potential of Dhatryadi Rasayana churna and its granules was determined by scavenging the DPPH and FRAP assays. The immunomodulatory activities of Dhatryadi Rasayana churna and its granules were studied in Wistar albino rats and the complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), and hemagglutination antibody titer were assessed. Dhatryadi Rasayana churna contained alkaloids (0.50 ± 0.298% w/w), tannins (9.84 ± 1.527% w/w), saponins (4.18 ± 2.126% w/w), and flavonoids (9.34 ± 1.026% w/w), while its granules contained 11.08 ± 2.468% w/w total tannins, 2.40 ± 1.132% w/w alkaloids, and 12.46 ± 2.645% w/w total flavonoids. The DPPH scavenging effect was determined by IC50 (churna - 23.89 μg/mL; granules - 9.33 μg/mL), and the antioxidant capacity assessed by FRAP was 77.0 mmol/100 g equivalent of ascorbic acid for churna and 50 mmol/100 g equivalent of ascorbic acid for granules. Dhatryadi Rasayana churna and its granules reflected a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in Wistar albino rats. Moreover, churna and granules of Dhatryadi Rasayana revealed significant antioxidant and immunomodulatory activities and these may be applied for treating different diseases as well as improving the immunity of the body.
Collapse
Affiliation(s)
- Sheenam Rani
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Usha Sharma
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Manish Purushottam Deshmukh
- Deputy
Director (Interdisciplinary Research), Datta
Meghe institute of Higher Education & Research, Sawangi, Wardha, Maharashtra 442001, India
| | - Vipin Kumar
- Department
of Pharmaceutical Sciences, Gurukul Kangri
(Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Khem Chand Sharma
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Mayank
Kumar Malik
- Department
of Chemistry, Gurukul Kangri (Deemed to
be University), Haridwar, Uttarakhand 249404, India
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
- School of
Bioengineering and Biosciences, Lovely Professional
University, Phagwara, Punjab 144001, India
| |
Collapse
|
13
|
Liu L, Zhu F, Xin Y, Zhang L, Hu C, Xu Y, Zhang J, Liu L, Chen G. Real-world effects of Yishen Tongbi decoction for rheumatoid arthritis: protocol for a prospective, observational, multicenter cohort study with validation against double-blind, randomized, controlled trial. Front Pharmacol 2024; 15:1320578. [PMID: 38410132 PMCID: PMC10895057 DOI: 10.3389/fphar.2024.1320578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a globally challenging and refractory autoimmune disease, constituting a serious menace to human health. RA is characterized by recurrent pain and is difficult to resolve, necessitating prolonged medication for control. Yishen Tongbi decoction is a traditional Chinese herbal compound prescribed for treating RA. We have completed a 3-year RCT study that confirmed the clinical efficacy of Yishen Tongbi decoction for RA. Notably, we observed a faster clinical remission rate compared to MTX by week 4 of treatment. In our forthcoming study, we intend to conduct a comprehensive assessment of the efficacy and safety of Yishen Tongbi decoction in the real-world treatment of RA through a prospective study. Methods and analysis: This prospective, multicenter, real-world observational study will be conducted at two designated centers in China from October 2023 to August 2025. The study will include 324 patients with active rheumatoid arthritis. One group will receive Yishen Tongbi decoction combined with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs). The other group will receive standard treatment. Standard treatment can be further divided into subgroups: csDMARDs, targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs), and biologic disease-modifying antirheumatic drugs (bDMARDs). In each group, the number of tender joints, number of swollen joints, pain score, patient global assessment, physician global assessment, disease activity index (DAS28-ESR or DAS28-CRP), clinical disease activity index (cDAI), simplified disease activity index (sDAI) and relevant laboratory data will be compared. Clinical indicators and disease activity of the patients will be assessed at baseline, week 4 and week 12 after the initiation of treatment. The primary outcome will be the American College of Rheumatology 20% improvement criteria (ACR20) attainment rate among patients at week 12 after treatment. Every adverse event will be reported. Ethics and dissemination: This study has been approved by the Ethics Committee of the first affiliated Hospital of Guangzhou University of traditional Chinese Medicine (NO.K-2023-009). The results of the study will be published in national and international peer-reviewed journals and at scientific conferences. The researchers will inform participants and other RA patients of the results through health education. Clinical Trial Registration: https://www.chictr.org.cn/index.html, identifier ChiCTR2300076073.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangfang Zhu
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yijun Xin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Shantou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shantou, China
| | - Congqi Hu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Xu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinming Zhang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingjie Liu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangxing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Yadav NK, Yadav R. Medicinal Effects, Phytochemistry, Pharmacology of Euphorbia prostrata and Promising Molecular Mechanisms. Chin J Integr Med 2024; 30:181-192. [PMID: 36653685 DOI: 10.1007/s11655-023-3544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 01/20/2023]
Abstract
Euphorbiaceae is a large family of dicotyledonous angiosperms with diverse genera including Euphorbia prostrata (E. prostrata). Current research has provided scientific evidence for traditional uses of E. prostrata against diverse pathological conditions such as anti-hemorrhoidal, anti-inflammatory, analgesic, wound healing, antioxidant, antibacterial, leishmanicidal, antitumor activity, and so on. The phytochemical screening has revealed the presence of glycosides, phytosterols, flavonoids, polyphenols, tannins, and anthraquinones with chemical structures elucidation of their respective compounds. The uniqueness of such multifactorial compounds present in this species endorses it as the potent therapeutic or prophylactic choice for several fatal diseases. Although ethnomedical applications served as a significant citation for pharmacology, the molecular mechanism has not been reviewed yet. The present paper provides a comprehensive review of research outcomes, pharmacology, toxicology, and molecular signaling of phytochemicals of E. prostrata species as a reference for relevant researchers. The study of bioactive compounds in crude extracts and fractions, the demonstration of primary mechanisms of pharmacology, along with the addition of toxicity, and clinical trials, should be conceded in depth. This review underlines the E. prostrata species that can be a promising phytomedicine since we are committed to excavating more intensely into their pharmacological role.
Collapse
Affiliation(s)
- Nirmala Kumari Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
- National Forensic Sciences University, Tripura Campus, Agartala, 799001, Tripura, India.
| |
Collapse
|
15
|
Tang N, Liu XT, Lin XL, Yang WX, Li QL, Wang GE, Wu YH. Erzhiwan Ameliorates Restraint Stress- and Monobenzone-Induced Depigmentation in Mice by Inhibiting Macrophage Migration Inhibitory Factor and 8-Hydroxy-2-Deoxyguanosine. Clin Cosmet Investig Dermatol 2024; 17:147-158. [PMID: 38283796 PMCID: PMC10812780 DOI: 10.2147/ccid.s420385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Purpose Vitiligo is an autoimmune disease that results in the loss of epidermal melanocytes. The treatments for patients with vitiligo remain lacking. Erzhiwan (EZW), a traditional Chinese Medicine composed of Ligustri Lucidi Fructus and Ecliptae Herba, was used to ameliorate depigmentation since ancient China. This study aims to investigate the effect of EZW on vitiligo-related depigmentation. Methods A vitiligo-related depigmentation mouse model was induced by monobenzone and restraint stress. The experimental depigmentation mice were treated with EZW. Histological observation of skin was conducted. Cutaneous oxidative damage and inflammation were determined. A network pharmacology analysis was carried out. Results EZW reduced depigmentation score (p<0.01), cutaneous inflammatory infiltration (p<0.01), and CD8α-positive expression (p<0.01), and increased cutaneous melanin content in experimental depigmentation mice. EZW reduced stress reaction in experimental depigmentation mice (p<0.01). EZW inhibited 8-hydroxy-2-deoxyguanosine (8-OHdG)-related DNA oxidative damage in the skin (p<0.05, p<0.01). In addition, EZW reduced cutaneous macrophage migration inhibitory factor (MIF)-CD74-NF-κB signaling (p<0.01). The network pharmacology analysis demonstrated that EZW regulated necroptosis, apoptosis, and FoxO signaling pathways in vitiligo. An in vitro experiment showed that the main ingredient of EZW, specnuezhenide, protected against monobenzone and MIF-induced cell death in HaCaT cells (p<0.01). Conclusion EZW ameliorates restraint stress- and monobenzone-induced depigmentation via the inhibition of MIF and 8-OHdG signaling. The findings provide a data basis of an utilization of EZW in vitiligo.
Collapse
Affiliation(s)
- Nan Tang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Xiao-Ting Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Xiao-Li Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Wen-Xiu Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Qi-Lin Li
- Departments of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Yan-Hua Wu
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, 510220, People’s Republic of China
| |
Collapse
|
16
|
Wang MQ, Zhang KH, Liu FL, Zhou R, Zeng Y, Chen AL, Yu Y, Xia Q, Zhu CC, Lin CZ. Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155124. [PMID: 38014837 DOI: 10.1016/j.phymed.2023.155124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cholestatic liver diseases (CLD) comprise a variety of disorders of bile formation, which causes chronic exposure to bile acid (BA) in the liver generally and results in hepatotoxicity and progressive hepatobiliary injury. Wedelolactone (7-methoxy-5, 11, 12-trihydroxy-coumestan, WED), the natural active compound derived from Ecliptae Herba, has been reported with valuable bioactivity for liver protection. Nevertheless, the effect of WED on cholestatic liver injury (CLI) remains unexplored. PURPOSE The present study aims to elucidate the protective effect of WED on Alpha-naphthylisothiocyanate (ANIT)-induced CLI mice, and to investigate its potential pharmacological mechanism. METHODS The anit-cholestatic and hepatoprotective effects of WED were evaluated in ANIT-induced CLI mice. Non-targeted metabolomics study combined with ingenuity pathway analysis (IPA) was used to explore the key mechanism of WED. The BA metabolic profile in enterohepatic circulation was analyzed to evaluate the effect of WED in regulating BA metabolism. Furthermore, molecular dynamics (MD) simulation and cellular thermal shift assay (CETSA) were used to simulate and verify the targeting activation of WED on the Farnesoid X receptor (FXR). The core role of FXR in WED promoting BA transportation, and alleviating BA accumulation-induced hepatotoxicity was further evaluated in WT and FXR knockout mice or hepatocytes. RESULTS WED dose-dependently alleviated ANIT-induced cholestasis and liver injury in mice, and simultaneously suppressed the signaling pathway of nuclear factor-kappa B/nuclear factor-erythroid 2-related factor 2 (NF-κB/NRF2) to relieve inflammation and oxidative stress. At the metabolite level, WED improved the metabolic disorder in CLI mice focusing on the metabolism of BA, arachidonic acid, and glycerophospholipid, that closely related to the process of BA regulation, inflammation, and oxidative damage. WED targeting activated FXR, which then transcribed its target genes, including the bile salt export pump (BSEP) and the BA transporter, and subsequently increased BA transportation to restore the damaged enterohepatic circulation of BA. Meanwhile, WED alleviated hepatic BA accumulation and protected the liver from BA-induced damage via NF-κB/NRF2 signaling pathway. Furthermore, FXR deficiency suppressed the protective effect of WED in vitro and in vivo. CONCLUSION WED regulated BA metabolism and alleviated hepatic damage in cholestasis. It protected the liver according to adjusted BA transportation and relieved BA accumulation-related hepatotoxicity via FXR-bile acid-NF-κB/NRF2 axis. Our study provides novel insights that WED might be a promising strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Mei-Qi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Hui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Le Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - A-Li Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quan Xia
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chen-Chen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chao-Zhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Myo H, Liana D, Phanumartwiwath A. Unlocking Therapeutic Potential: Comprehensive Extraction, Profiling, and Pharmacological Evaluation of Bioactive Compounds from Eclipta alba (L.) Hassk. for Dermatological Applications. PLANTS (BASEL, SWITZERLAND) 2023; 13:33. [PMID: 38202343 PMCID: PMC10781016 DOI: 10.3390/plants13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Herbal medicine has been studied as an alternate approach to modern medicine as it is more cost-effective and accessible via natural sources. Eclipta alba (E. alba, L.) Hassk. is a weed plant abundantly distributed throughout different regions of the world and contains abundant bioactive compounds used for various skin conditions. In this review, we aimed to gather information from the literature about the extraction, separation, and identification of these bioactive compounds and their potential in skin diseases. Relevant studies published before August 2023 were identified and selected from electronic databases, including Scopus, SciFinder, ScienceDirect, Google Scholar, and Wiley Library, using the following keywords: Eclipta alba, Eclipta prostrata, phytochemicals, extraction, separation, isolation, identification, characterization, pharmacological activity, and skin conditions. Up-to-date extraction, separation, and identification methods of bioactive compounds from E. alba and their skin-related pharmacological activities are discussed in this review. As there are limitations regarding extraction, separation, and identification methods, and in-depth mechanistic and human studies of the skin-related pharmacological activities of bioactive compounds, these gaps are areas for future research to expand our understanding and broaden the potential applications of this medicinal weed plant, including the development of cosmeceutical and skincare products, anti-inflammatory agents, and formulations for dermatological treatments.
Collapse
Affiliation(s)
| | | | - Anuchit Phanumartwiwath
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (H.M.); (D.L.)
| |
Collapse
|
18
|
Phan TKP, Wang SL, Nguyen QV, Phan TQ, Nguyen TT, Tran TTT, Nguyen AD, Nguyen VB, Doan MD. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals (Basel) 2023; 16:1476. [PMID: 37895947 PMCID: PMC10609904 DOI: 10.3390/ph16101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Eclipta prostrata L. (EPL), a medicinal plant, is widely utilized in the central highlands of Vietnam. This study aims to assess the chemical profile and potential medical effects of an EPL extract rich in flavonoids. A total of 36 secondary metabolites were identified from the EPL extract through GC-MS and UHPLC-UV analysis. Among them, 15 volatile compounds and several phenolic and flavonoid chemicals, including salicylic acid, epicatechin gallate, isovitexin, and apigetrin, were reported in EPL extract for the first time. This herbal extract demonstrated moderate inhibition against α-amylase and α-glucosidase, and high anti-oxidant and anti-acetylcholinesterase activities (IC50 = 76.8 ± 0.8 μg/mL). These promising attributes can be likely attributed to the high levels of major compounds, including wedelolactone (1), chlorogenic acid (3), epicatechin gallate (6), salicylic acid (8), isovitexin (9), apigetrin (11), and myricetin (12). These findings align with the traditional use of EPL for enhancing memory and cognitive function, as well as its potential benefits in diabetes management. The results of the molecular docking study reveal that the major identified compounds (1, 6, 9, and 11) showed a more effective acetylcholinesterase inhibitory effect than berberine chloride, with good binding energy (DS values, -12.3 to -14.3 kcal/mol) and acceptable values of RMSD (1.02-1.67 Å). Additionally, almost all the identified major compounds exhibited good ADMET properties within the required limits.
Collapse
Affiliation(s)
- Thi Kim Phung Phan
- Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Quang Vinh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Tu Quy Phan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Tan Thanh Nguyen
- School of Chemistry Biology and Environment, Vinh University, Vinh City 43100, Vietnam;
| | | | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| |
Collapse
|
19
|
Yang P, Ling XY, Zhou XF, Chen YX, Wang TT, Lin XJ, Zhao YY, Ye YS, Huang LX, Sun YW, Qi YX, Ma DM, Zhan RT, Huang XS, Yang JF. Comparing genomes of Fructus Amomi-producing species reveals genetic basis of volatile terpenoid divergence. PLANT PHYSIOLOGY 2023; 193:1244-1262. [PMID: 37427874 DOI: 10.1093/plphys/kiad400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xu-Yi Ling
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Fan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Xia Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tian-Tian Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Jing Lin
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Shi Ye
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lin-Xuan Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ye-Wen Sun
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Xin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Dong-Ming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruo-Ting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jin-Fen Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
20
|
Wei J, Wang Y, Wang X, Zhang Y, Zheng Y, Shao J, Cheng W, Li Y. Rapid screening of active ingredients and action mechanisms of Ecliptae Herba for treating Alzheimer's disease by UPLC-Q-TOF/MS and "component-target-pathway" network. Fitoterapia 2023; 169:105613. [PMID: 37454776 DOI: 10.1016/j.fitote.2023.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. The drugs widely used in clinic are mainly single-target drugs for symptomatic treatment, which can only alleviate symptoms to a certain extent. Ecliptae Herba (EH) is considered a potential therapeutic drug for AD due to its neuroprotective effects. Although EH has a clear anti-AD effect, the material basis and mechanism remain unclear. Therefore, we adopted an efficient analytical technique, namely ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), combined with "component-target-pathway" network to explore the active components and potential mechanisms of EH in treating AD. Due to the high sensitivity of UPLC-Q-TOF/MS, a total of 50 components were identified in EH. Among them, 20 and 12 compounds were found in plasma and brain samples, respectively. The network pharmacology analysis revealed that apigenin, luteolin, ecliptasaponin A, chlorogenic acid, wedelolactone, and quercetin were the active components, which could affect the serotonergic synapse, calcium and cAMP signaling pathways by regulating related targets such as EGFR, PRKCA, BRAF and ERBB2. This study clarified that EH can exert anti-AD effect through multi-component, multi-target and multi-pathway characteristics. Furthermore, it offers a good foundation for further in-depth research on the anti-AD effects of EH, and provides a valuable approach for the rapid screening of active components and potential mechanisms of other medicinal plants, potentially bringing changes to the discovery and development of novel therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin 300399, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
21
|
Tian S, Li YL, Wang J, Dong RC, Wei J, Ma Y, Liu YQ. Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116433. [PMID: 37004744 DOI: 10.1016/j.jep.2023.116433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Ecliptae herba (Eclipta prostrata (L.) L.) is an ethnomedicinal herb, which is used mainly to nourish kidney and thus strengthen bones according to traditional Chinese medicine theory. Pharmacological studies have supported the ethnomedicine use, showing that Ecliptae herba extract has an anti-osteoporotic effect in vivo and promoted osteoblast proliferation and activity in vitro. However, the molecular mechanism of Ecliptae herba on osteoblast differentiation from bone marrow mesenchymal stem cells (BMSC), the progenitors of osteoblasts, is still unclear. AIM OF THE STUDY N6-methyladenosine (m6A) mRNA epigenetic modification may play a key role in promoting osteoblastic differentiation, and thus treating osteoporosis. This study sought to assess the mechanism through which Eclipate herba and its component wedelolactone influence m6A modification during the process of osteoblastogenesis from BMSC. MATERIAL AND METHODS The alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were applied to determine osteoblastogenesis from BMSC. Western blot and quantitative real-time PCR were performed. RNA sequencing analysis was used to determine the characteristics of m6A methylation. Stable knocking down of METTL3 using lentiviral-based shRNA was performed. RESULTS Upon 9 d treatment of BMSC with ethyl acetate extract of Ecliptae herba (MHL), ALP activity and ossification level increased in comparison with osteogenic medium (OS)-treated control. The expression of methyltransferase METTL3 and METTL14 was significantly increased, but WTAP expression had no change in response to MHL treatment. Knocking down of METTL3 resulted in a decrease in MHL-induced ALP activity, ossification level as well as mRNA expression of Osterix and Osteocalcin, two bone formation-related markers. The level of m6A increased when BMSC was treated with MHL for 9 d. RNA sequencing analysis indicated that MHL treatment altered mRNA m6A modification of genes associated with osteoblastogenesis. By kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, HIF-1α, PI3K/Akt, and Hippo signaling pathways were enriched and associated with m6A modification. The expression of m6A-modified genes including HIF-1α, VEGF-A, and RASSF1, was upregulated by MHL, but the upregulation was reversed after METTL3 knockdown. Additionally, the enhanced expression of METTL3 was also observed after treatment with wedelolactone, a component from MHL. CONCLUSIONS These results suggested a previously uncharacterized mechanism of MHL and wedelolactone on osteoblastogenesis, by which METTL3-mediated m6A methylation is involved and thus contributes to the enhancement of osteoblastogenesis.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yi-Lin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Ren-Chao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
22
|
Gao D, Cho CW, Yang Z, Li X, Kang JS. Identification and Quantitation of the Bioactive Components in Wasted Aralia elata Leaves Extract with Endothelial Protective Activity. Molecules 2023; 28:5907. [PMID: 37570877 PMCID: PMC10421206 DOI: 10.3390/molecules28155907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Aralia elata, a renowned medicinal plant with a rich history in traditional medicine, has gained attention for its potential therapeutic applications. However, the leaves of this plant have been largely overlooked and discarded due to limited knowledge of their biological activity and chemical composition. To bridge this gap, a comprehensive study was conducted to explore the therapeutic potential of the 70% ethanol extract derived from Aralia elata leaves (LAE) for the treatment of cardiovascular disease (CVD). Initially, the cytotoxic effects of LAE on human umbilical vein endothelial cells (HUVECs) were assessed, revealing no toxicity within concentrations up to 5 μg/mL. This suggests that LAE could serve as a safe raw material for the development of health supplements and drugs aimed at promoting cardiovascular well-being. Furthermore, the study found that LAE extract demonstrated anti-inflammatory properties in HUVECs by modulating the PI3K/Akt and MAPK signaling pathways. These findings are particularly significant as inflammation plays a crucial role in the progression of CVD. Moreover, LAE extract exhibited the ability to suppress the expression of adhesion molecules VCAM-1 and ICAM-1, which are pivotal in leukocyte migration to inflamed blood vessels observed in various pathological conditions. In conjunction with the investigation on therapeutic potential, the study also established an optimal HPLC-PDA-ESI-MS/MS method to identify and confirm the chemical constituents present in 24 samples collected from distinct regions in South Korea. Tentative identification revealed the presence of 14 saponins and nine phenolic compounds, while further analysis using PCA and PLS-DA allowed for the differentiation of samples based on their geographical origins. Notably, specific compounds such as chlorogenic acid, isochlorogenic acid A, and quercitrin emerged as marker compounds responsible for distinguishing samples from different regions. Overall, by unraveling its endothelial protective activity and identifying key chemical constituents, this research not only offers valuable insights for the development of novel treatments but also underscores the importance of utilizing and preserving natural resources efficiently.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Chong-Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Jong-Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
23
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
Macalalad MAB, Gonzales AA. In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules 2023; 28:5301. [PMID: 37513175 PMCID: PMC10384415 DOI: 10.3390/molecules28145301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Current oral medications for type 2 diabetes target a single main physiological mechanism. They either activate or inhibit receptors to enhance insulin sensitivity, increase insulin secretion, inhibit glucose absorption, or inhibit glucose production. In advanced stages, combination therapy may be required because of the limited efficacy of single-target drugs; however, medications are becoming more costly, and there is also the risk of developing the combined side effects of each drug. Thus, identifying a multi-target drug may be the best strategy to improve treatment efficacy. This study sees the potential of 2657 Filipino phytochemicals as a source of natural inhibitors against four targets of diabetes: PTP1B, DPP-4, SGLT-2, and FBPase. Different computer-aided drug discovery techniques, including ADMET profiling, DFT optimization, molecular docking, MD simulations, and MM/PBSA energy calculations, were employed to elucidate the stability and determine the binding affinity of the candidate ligands. Through in silico methods, we have identified seven potential natural inhibitors against PTP1B, DPP-4, and FBPase, and ten against SGLT-2. Eight plants containing at least one natural inhibitor of each protein target were also identified. It is recommended to further investigate the plants' potential to be transformed into a safe and scientifically validated multi-target drug for diabetes therapies.
Collapse
Affiliation(s)
- Mark Andrian B Macalalad
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Metro Manila, Philippines
| | - Arthur A Gonzales
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Metro Manila, Philippines
| |
Collapse
|
25
|
Hasatsri S, Suthi J, Siriwut N, Charoensappakit O. Physical Properties and pH Environment of Foam Dressing Containing Eclipta prostrata Leaf Extract and Gelatin. Pharmaceuticals (Basel) 2023; 16:ph16050685. [PMID: 37242467 DOI: 10.3390/ph16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Eclipta prostrata (E. prostrata) has several biological activities, including antibacterial and anti-inflammatory activities, that improve wound healing. It is well known that physical properties and pH environment are crucial considerations when developing wound dressings containing medicinal plant extracts in order to create an appropriate environment for wound healing. In this study, we prepared a foam dressing containing E. prostrata leaf extract and gelatin. Chemical composition was verified using Fourier-transform infrared spectroscopy (FTIR) and pore structure was obtained using scanning electron microscopy (SEM). The physical properties of the dressing, including absorption and dehydration properties, were also evaluated. The chemical properties were measured to determine the pH environment after the dressing was suspended in water. The results revealed that the E. prostrata dressings had a pore structure with an appropriate pore size (313.25 ± 76.51 µm and 383.26 ± 64.45 µm for the E. prostrata A and E. prostrata B dressings, respectively). The E. prostrata B dressings showed a higher percentage of weight increase in the first hour and a faster dehydration rate in the first 4 h. Furthermore, the E. prostrata dressings had a slightly acidic environment (5.28 ± 0.02 and 5.38 ± 0.02 for the E. prostrata A and E. prostrata B dressings at 48 h, respectively).
Collapse
Affiliation(s)
- Sukhontha Hasatsri
- Department of Pharmacy Practice, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Jariya Suthi
- Sunpasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand
| | - Nattaporn Siriwut
- NorthEastern Institute of Child and Adolescent Mental Health, Khon Kaen 40000, Thailand
| | | |
Collapse
|
26
|
Xiu M, Zhao Y, Wang X, Yuan S, Qin B, Sun J, Cui L, Song J. Regulation of SIRT1-TLR2/TLR4 pathway in cell communication from macrophages to hepatic stellate cells contribute to alleviates hepatic fibrosis by Luteoloside. Acta Histochem 2023; 125:151989. [PMID: 36529079 DOI: 10.1016/j.acthis.2022.151989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Regulating macrophage-hepatic stellate cells (HSCs) crosstalk through SIRT1-TLR2/TLR4 has contributed to the essence of new pharmacologic strategies to improve hepatic fibrosis. We investigated how Luteoloside (LUT), one of the flavonoid monomers isolated from Eclipta prostrata (L.) L., modulates macrophage-HSCs crosstalk during hepatic fibrosis. HSC-T6 or rat peritoneal macrophages were activated by TGF-β or LPS/ATP, and then treated with LUT or Sirtinol (SIRT1 inhibitor) for 6 h. Further, HSCs were cultured with the conditioned medium from the LPS/ATP activated peritoneal macrophages. In HSC-T6 or peritoneal macrophages, LUT could decrease the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. LUT also significantly increased the expressions of SIRT1 and ERRα. And LUT significantly suppressed the releases of pro-inflammatory cytokines, including NLRP3, ASC, caspase-1, IL-1β, and regulated signaling TLR2/TLR4-MyD88 activation. The expressions of TLR2, TLR4, NLRP3, caspase-1, IL-1β, α-SMA were increased and the expression of ERRα was decreased by Sirtinol, indicated that LUT might mediate SIRT1 to regulate TLR4 expression and further alleviate inflammation and fibrosis. LUT could regulate SIRT1-mediated TLR4 and ECM in HSCs was reduced, when HSCs were cultured with conditioned medium. Hence, LUT could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines in activated HSCs or macrophages. In conclusion, LUT might be a promising candidate that regulating SIRT1-TLR2/TLR4 signaling in macrophages interacting with HSCs during hepatic fibrosis.
Collapse
Affiliation(s)
- Mengxue Xiu
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
| | - Yiming Zhao
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Xuehui Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Siyu Yuan
- Siping Central People's Hospital, Siping City, Jilin Province 136000, China
| | - Bofeng Qin
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Long Cui
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
27
|
Sandhiutami NMD, Dewi RS, Rahma F, Yang F. Potential Use of Some Indonesian Plants to Inhibits Angiotensin-converting Enzyme In Vitro. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND: Some Indonesian plants, such as Vaccinium varingiaefolium Miq., Plectranthus scutellarioides (L.) R.Br., Syzygium myrtifolium Walp., and Eclipta prostrata (L.) L., are rich of flavonoid and anthocyanin. Flavonoid, flavan-3-ol, quercetin, anthocyanin, and tannin compounds can reduce systemic vascular resistance because they cause vasodilation and are thought to be able to influence the function of angiotensin-converting enzyme (ACE) and inhibit ACE activity, which plays an important role in the process of hypertension.
AIM: This study aims to determine the potential of some Indonesian plants to inhibit ACE activity.
METHODS: Testing of ACE inhibitory activity is carried out by the hippuric acid compounds formed as a result of the reaction between the substrate and the enzyme, then measured spectrophotometrically. The inhibitory and IC50 values of each test sample were compared with the positive control of Captopril.
RESULTS: The four plant extracts contained secondary metabolites, such as flavonoids, tannins, saponins, quinones, steroids, triterpenoids, and essential oils. Ethanol extract of V. varingiaefolium Miq., P. scutellarioides (L.) R.Br., S. myrtifolium Walp., and E. prostrata (L.) L. each had an IC50 value of ACE inhibition activity of 131.4 ppm, 206. 7 ppm, 151.2 ppm, and 196.0 ppm. The IC50 value of the Captopril with inhibition of ACE activity is 11.1 ppm.
CONCLUSION: This study shows that some Indonesian plants have the activity to inhibit the ACE and potential antihypertensive drug candidates with ACE inhibitory activity.
Collapse
|
28
|
Sonia R, Shaheen S, Khalid S, Sharifi-Rad J, Shahid MN, Mukhtar H, Khalid Z, Harun N, Hussain RA, Khan F. Light and scanning electron microscopic comparative studies of geminivirus infected and healthy Eclipta alba (L.). Microsc Res Tech 2022; 85:2848-2856. [PMID: 35488419 DOI: 10.1002/jemt.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/08/2022]
Abstract
Eclipta alba (L.) is a valuable medicinal plant. However, its medicinal efficacy can be affected by geminivirus infection. Therefore, identification of healthy specimen is essential before to use as medicine. The present study provided the taxonomic characterization of geminivirus infected and healthy E. alba plant by studying apparent morphology and microscopic features through light and scanning electron microscopy. Before taxonomic characterization infected and healthy specimens were separated through molecular detection of geminivirus. Results of morphological studies reported that geminivirus infected E. alba plant showed systematic symptoms of infection like stunted growth, distortion and chlorosis of leaves, decrease in size of root, shoot and fruit, and so forth in comparison to healthy specimen. Anatomical findings reported that in both plants anomocytic and anisocytic types of stomata with multicellular warty trichomes were present. However, variations were observed in quantitative measures such as size of trichomes, epidermal, subsidiary and guard cells. Palynological observations identifies that both plants possessed tricolporate type of pollen but variation was mainly observed in size and shape of pollen, thickness of exine and intine, P/E ratio, pore size, interspecific difference, size of colpi, and pollen ornamentation. Overall this study concluded that both healthy and infected E. alba do not reported much variations in qualitative taxonomic features, but can be differentiated in terms of quantitative taxonomic evidences. Future studies are recommended for pharmacological analysis of both healthy and virus infected plants.
Collapse
Affiliation(s)
- Romisha Sonia
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sana Khalid
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Muhammad Naveed Shahid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Hanan Mukhtar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zaryab Khalid
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Nidaa Harun
- Department of Botany, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Rana Abrar Hussain
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Farah Khan
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
29
|
Liao PQ, Chiu YC, Mejia HM, Tan CM, Chen YK, Yang JY. First Report of ' Candidatus Phytoplasma aurantifolia' Associated with the Invasive Weed Eclipta prostrata (L.) in Taiwan. PLANT DISEASE 2022; 107:550. [PMID: 35442051 DOI: 10.1094/pdis-03-22-0504-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eclipta prostrata (L.), commonly known as false daisy of the family Asteraceae, is an erect or prostrate annual herb that grows 5 to 45 cm tall. It is widespread mainly in tropical and subtropical regions like India, China, Taiwan, Thailand, and Brazil (Chung et al., 2017). E. prostrata has very wide medicinal properties accounted by several phytochemicals like thiophene derivatives, steroids, flavonoids, and polypeptides (Feng et. al., 2019). It is also used as a traditional herbal medicine for the treatment of bleeding, hemoptysis and itching, hepatitis diarrhea, and even hair loss (Timalsina et al., 2021). In September 2021, E. prostrata displaying branch proliferation and phyllody symptoms with about 30% (6 were symptomatic and 14 were healthy) incidence rate was observed in Mailiao, Yunlin, Taiwan where phytoplasma disease is permeating and has affected many crops and non-crop species including peanut, mungbean, curl-leaved tobacco, false amaranth, etc. Compared to healthy E. prostrata bearing white ray florets and cream or dull white disk florets, symptomatic ones developed phyllody which is more pronounced on the severely infected ones. Further examination by transmission electron microscope revealed a pleomorphic (circular, elliptical, and bell-shaped) phytoplasma-like organisms accumulated in the sieve elements of the symptomatic leaves. Phytoplasma infection was further confirmed by nested polymerase chain reaction using universal primers P1/P7 (carried out for 12 cycles), followed by R16F2n/R16R2 (carried out for 35 cycles) on the genomic DNA extracted by Plant Genomic DNA Purification Kit (DP022-150, GeneMark) (Lee et al. 1993). Results revealed that the conserved 16S rRNA gene with a 1.2 kb fragment size was amplified only by the symptomatic samples. Furthermore, western blotting was done using the polyclonal antibody raised against the immunodominant membrane protein (Imp) of peanut witches'-broom (PnWB) phytoplasma, a 'Candidatus Phytoplasma aurantifolia' in Taiwan that belongs group to 16SrII (Chen et al. 2021). Consistent with the nested PCR, only the symptomatic samples revealed a specific Imp signal with a size of 19 kDa. To classify the phytoplasma associated with the symptomatic E. prostrata, the DNA sequence (No. OM397418) of the P1/P7 primer pair-amplified DNA fragment was obtained using P1 and a nested primer (5'-GGGTCTTTACTGACGCTGAGG-3'), which shares 100% identity with that of GenBank accession NZ_AMWZ01000008 (complement [31109 to 32640]) of PnWB phytoplasma. Further analysis of the virtual RFLP pattern of OM397418 by iPhyClassifier confirmed that the phytoplasma identified in the symptomatic E. prostrata belongs 16SrII-V subgroup. To the best of our knowledge, this is the first report of phytoplasma disease in E. prostrata associated with the 'Ca. P. aurantifolia' in Taiwan.
Collapse
Affiliation(s)
- Pei-Qing Liao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan;
| | - Yi-Ching Chiu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan;
| | - Helen Mae Mejia
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan;
| | - Choon-Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan;
| | - Yuh-Kun Chen
- National Chung Hsing University, Department of Plant Pathology, 250 KuoKuang Road, Taichung, Taiwan, Taiwan, 402;
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, 145 Xingda Rd., Taichung, Taiwan, 40227
- United States;
| |
Collapse
|