1
|
Funahashi Y, Ahammad RU, Zhang X, Hossen E, Kawatani M, Nakamuta S, Yoshimi A, Wu M, Wang H, Wu M, Li X, Faruk MO, Shohag MH, Lin YH, Tsuboi D, Nishioka T, Kuroda K, Amano M, Noda Y, Yamada K, Sakimura K, Nagai T, Yamashita T, Uchino S, Kaibuchi K. Signal flow in the NMDA receptor-dependent phosphoproteome regulates postsynaptic plasticity for aversive learning. Sci Signal 2024; 17:eado9852. [PMID: 39255336 DOI: 10.1126/scisignal.ado9852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.
Collapse
Affiliation(s)
- Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Rijwan Uddin Ahammad
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, USA
| | - Xinjian Zhang
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Emran Hossen
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Akira Yoshimi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Minhua Wu
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Huanhuan Wang
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Mengya Wu
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Xu Li
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Md Omar Faruk
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Md Hasanuzzaman Shohag
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - You-Hsin Lin
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tomoki Nishioka
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yukihiko Noda
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji Sakimura
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Division of Neurophysiology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shigeo Uchino
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
2
|
Ge L, Chen W, Wei F. Annexin A1 protects epidermal stem cells against ultraviolet-B irradiation-induced mitochondrial dysfunction. Arch Dermatol Res 2024; 316:385. [PMID: 38874830 DOI: 10.1007/s00403-024-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 06/15/2024]
Abstract
Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B. Cell viability/ANXA1 protein level were assessed. After oe-ANXA1 transfection, ESCs were treated with oe-ANXA1/UV-B irradiation/CCCP/CCG-1423/3-methyladenine for 12 h. Cell viability/death, and adenosine triphosphate (ATP)/reactive oxygen species (ROS) levels were determined. Mitochondrial membrane potential (MMP) changes/DNA (mtDNA) content/oxygen consumption and RhoA activation were assessed. ROCK1/p-MYPT1/MYPT1/(LC3BII/I)/Beclin-1/p62 protein levels were determined. Mitochondrial morphology was observed. Mito-Tracker Green (MTG) and LC3B levels were determined. UV-B irradiation decreased cell viability/ANXA1 expression in a dose-dependent manner. UV-B-treated ESCs exhibited reduced cell viability/ATP content/MMP level/mitochondrial respiratory control ratio/mtDNA number/RhoA activity/MYPT1 phosphorylation/MTG+LC3B+ cells/(LC3BII/I) and Beclin-1 proteins, increased cell death/ROS/p62/IL-1β/IL-6/TNF-α expression, contracted mitochondrial, disappeared mitochondrial cristae, and increased vacuolar mitochondria, which were averted by ANXA1 overexpression, suggesting that UV-B induced ESC mitochondrial dysfunction/cell injury/inflammation by repressing mitophagy, but ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thus repressing UV-B's effects. Mitophagy activation ameliorated UV-B-caused ESC mitochondrial dysfunction/cell injury/inflammation. Mitophagy inhibition partly diminished ANXA1-ameliorated UV-B's effects. Conjointly, ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thereby improving UV-B-induced ESC mitochondrial dysfunction/cell injury.
Collapse
Affiliation(s)
- Lingzhi Ge
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Wenfang Chen
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Fangli Wei
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China.
| |
Collapse
|
3
|
Goyal RK, Rattan S. Role of mechanoregulation in mast cell-mediated immune inflammation of the smooth muscle in the pathophysiology of esophageal motility disorders. Am J Physiol Gastrointest Liver Physiol 2024; 326:G398-G410. [PMID: 38290993 PMCID: PMC11213482 DOI: 10.1152/ajpgi.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Major esophageal disorders involve obstructive transport of bolus to the stomach, causing symptoms of dysphagia and impaired clearing of the refluxed gastric contents. These may occur due to mechanical constriction of the esophageal lumen or loss of relaxation associated with deglutitive inhibition, as in achalasia-like disorders. Recently, immune inflammation has been identified as an important cause of esophageal strictures and the loss of inhibitory neurotransmission. These disorders are also associated with smooth muscle hypertrophy and hypercontractility, whose cause is unknown. This review investigated immune inflammation in the causation of smooth muscle changes in obstructive esophageal bolus transport. Findings suggest that smooth muscle hypertrophy occurs above the obstruction and is due to mechanical stress on the smooth muscles. The mechanostressed smooth muscles release cytokines and other molecules that may recruit and microlocalize mast cells to smooth muscle bundles, so that their products may have a close bidirectional effect on each other. Acting in a paracrine fashion, the inflammatory cytokines induce genetic and epigenetic changes in the smooth muscles, leading to smooth muscle hypercontractility, hypertrophy, and impaired relaxation. These changes may worsen difficulty in the esophageal transport. Immune processes differ in the first phase of obstructive bolus transport, and the second phase of muscle hypertrophy and hypercontractility. Moreover, changes in the type of mechanical stress may change immune response and effect on smooth muscles. Understanding immune signaling in causes of obstructive bolus transport, type of mechanical stress, and associated smooth muscle changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.NEW & NOTEWORTHY Esophageal disorders such as esophageal stricture or achalasia, and diffuse esophageal spasm are associated with smooth muscle hypertrophy and hypercontractility, above the obstruction, yet the cause of such changes is unknown. This review suggests that smooth muscle obstructive disorders may cause mechanical stress on smooth muscle, which then secretes chemicals that recruit, microlocalize, and activate mast cells to initiate immune inflammation, producing functional and structural changes in smooth muscles. Understanding the immune signaling in these changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Raj K Goyal
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, United States
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, United States
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kummel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Tanaka R, Liao J, Hada K, Mori D, Nagai T, Matsuzaki T, Nabeshima T, Kaibuchi K, Ozaki N, Mizoguchi H, Yamada K. Inhibition of Rho-kinase ameliorates decreased spine density in the medial prefrontal cortex and methamphetamine-induced cognitive dysfunction in mice carrying schizophrenia-associated mutations of the Arhgap10 gene. Pharmacol Res 2023; 187:106589. [PMID: 36462727 DOI: 10.1016/j.phrs.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Copy-number variations in the ARHGAP10 gene encoding Rho GTPase-activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry "double-hit" mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen‑based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase-targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3-20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tetsuo Matsuzaki
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1129, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi 468-0069, Japan.
| |
Collapse
|