1
|
Huang B, Zhang Y, Ruan G, Yu X, Liu Q, Zhang M, Yu M, Chen A, Liang Y, Xie L, Luo L. The Impact of SGLT1 Inhibition on Frailty and Sarcopenia: A Mediation Mendelian Randomization Study. J Cachexia Sarcopenia Muscle 2024; 15:2693-2704. [PMID: 39474649 PMCID: PMC11634476 DOI: 10.1002/jcsm.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Although pharmacological effects of SGLT2 inhibitors on the development of frailty and sarcopenia were known, the role of SGLT1 remained less clear. The present study investigated the possible effect of SGLT1 inhibition on these conditions and explored potential mediators. METHODS A two-sample Mendelian randomization (MR) analysis was performed to assess the effect of SGLT1 inhibition on frailty index (FI) and low grip strength in individuals aged 60 years and older using both the FNIH and EWGSOP criteria. Subsequently, a two-step MR analysis was conducted to investigate the mediating role of insulin resistance phenotype and identify potential mediators of the effect of SGLT1 inhibition on the FI and low grip strength from 1558 plasma proteins and 1352 metabolites. RESULTS Genetically predicted SGLT1 inhibition was associated with decreased FI (β: -0.290 [95% CI: -0.399, -0.181]) and reduced risk of low grip strength in individuals aged 60 years and older under both FNIH (β: -0.796 [95% CI: -1.216, -0.376]) and EWGSOP criteria (β: -0.287 [95% CI: -0.532, -0.041]). The two-step MR analysis demonstrated the role of insulin resistance phenotype in mediating SGTL1 inhibition on alleviating frailty (mediation proportion = 19.56% [95% CI: 8.42%, 30.70%]). After screening, 24 proteins and 16 metabolites were identified as mediators of the impact of SGLT1 inhibition on FI. Additionally, 13 proteins and 16 metabolites were found to mediate the effect of SGLT1 inhibition on low grip strength according to FNIH criteria while 22 proteins and 6 metabolites were shown to mediate the impact of SGLT1 inhibition on low grip strength under EWGSOP criteria. CONCLUSIONS SGLT1 inhibition potentially mitigated frailty and sarcopenia through several biological mediators, shedding new light for therapeutic intervention.
Collapse
Affiliation(s)
- Bang‐Bang Huang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Jie Zhang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
| | - Guang‐Feng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xing Yu
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Key Laboratory of Molecular Neurology and Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Mei‐Jin Zhang
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of CardiologyFirst Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Cardiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ming‐Zhong Yu
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ai Chen
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ye‐Bei Liang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Liang‐Di Xie
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Li Luo
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
2
|
Peng P, Lu Y, Ren X, Yan C, Guo X, Liu R, Song X, Huang H. SIRT3 differentially regulates lysine benzoylation from SIRT2 in mammalian cells. iScience 2024; 27:111176. [PMID: 39524354 PMCID: PMC11546291 DOI: 10.1016/j.isci.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysine benzoylation (Kbz), a new type of protein post-translational modification (PTM) we discovered, has garnered significant attention. While we initially identified SIRT2 as a debenzoylase in mammalian cells, recent findings suggest its exclusivity may be questioned. However, other debenzoylases in mammalian cells remain underexplored. Here, our study reveals SIRT3 as an additional debenzoylase. Through quantitative analysis, we identified 1,075 Kbz sites in mammalian cells, with 44 specifically mediated by SIRT3 and 66 influenced by SIRT2. Notably, SIRT3 and SIRT2 regulate distinct Kbz substrates, indicating involvement in different cellular processes. Functional investigations demonstrated SIRT3's regulation of benzoylated protein peptidyl-prolyl cis-trans isomerase F (PPIF), where K73bz and K197bz markedly diminished interactions with the tumor suppressor p53. Additionally, K978bz on ATP-citrate lyase (ACLY) notably inhibited its enzymatic activity. This study not only identifies a debenzoylase and its Kbz substrates but also enhances our understanding of Kbz's biological functions.
Collapse
Affiliation(s)
- Panpan Peng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Zhang L, Lv Z, Xu QY, Wu B. TREM2 promotes the proliferation and invasion of renal cell carcinoma cells by inhibiting the P53 signaling pathway. Oncol Lett 2024; 28:538. [PMID: 39310025 PMCID: PMC11413725 DOI: 10.3892/ol.2024.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy characterized by poor prognosis and high mortality. The role of triggering receptor expressed on myeloid cells-2 (TREM2) in RCC progression has been increasingly recognized, yet its underlying mechanisms remain to be fully elucidated. The aim of the present study was to assess the effects of TREM2 on RCC cells and its potential mechanisms. Lentiviral transfection was used to knockdown and overexpress TREM2 in RCC cells, and the expression level of TREM2 was evaluated using reverse transcription-quantitative PCR. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to assess the proliferation of the RCC cells. Cell migration and invasion was evaluated using the wound healing assay and Transwell assay, respectively. Western blotting was used to assess the expression levels of TREM2, P53, p-P53, P21 and p-P21 in TREM2 knockdown or overexpression RCC cells. The results demonstrated that the expression level of TREM2 was significantly higher in cancer tissues compared with adjacent normal tissues. The results of the CCK-8 and EdU assays demonstrated that knockdown of TREM2 significantly inhibited the proliferation of RCC cells, whilst overexpression of TREM2 enhanced the proliferation of RCC cells. The results of the wound healing and Transwell assay revealed that, compared with the control group, the overexpression of TREM2 significantly increased the migration and invasion of RCC cells, whereas knockdown of TREM2 significantly decreased the migration of RCC cells. In addition, western blotting demonstrated that the phosphorylation levels of P53 and P21 proteins were significantly increased after TREM2 knockdown in RCC cells. In conclusion, TREM2 is highly expressed in RCC tissues and promotes the migration of RCC cells by inhibiting the P53 signaling pathway. The present study provides new insights into the regulatory effect of TREM2 on RCC and further reveals the potential of TREM2 as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhong Lv
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Qin-Yu Xu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Wu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
4
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
5
|
Bunik VI. Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance. Biomolecules 2024; 14:1342. [PMID: 39595519 PMCID: PMC11592160 DOI: 10.3390/biom14111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
In recent decades, biology has made tremendous progress in the high-throughput analytic and genetic techniques used to characterize the molecular components of living cells and their interactions [...].
Collapse
Affiliation(s)
- Victoria I. Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov Medical University, 105043 Moscow, Russia
| |
Collapse
|
6
|
Song T, Li J, Xia Y, Hou S, Zhang X, Wang Y. 1,25-D3 ameliorates ischemic brain injury by alleviating endoplasmic reticulum stress and ferroptosis: Involvement of vitamin D receptor and p53 signaling. Cell Signal 2024; 122:111331. [PMID: 39094671 DOI: 10.1016/j.cellsig.2024.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Endoplasmic reticulum stress (ERS) and ferroptosis are linked to cerebral ischemia reperfusion injury (CIRI). The neuroprotective properties of 1α, 25-dihydroxyvitamin D3 (VitD3 or 1,25-D3) have been well established; however, the mechanism by which VitD3 treats CIRI through ERS and ferroptosis has not been examined. Hence, we developed middle cerebral artery occlusion/reperfusion (MCAO/R) model in SD rats to ascertain if VitD3 preconditioning mediates ERS and ferroptosis involving of p53 signaling. In this study, we observed that VitD3 can reduce infarction volume and cerebral edema, which leads to the improvement of nerve function. HE, Nissl and Tunel staining showed that VitD3 treatment significantly improved the morphology of neuronal cells and reduced their death. The expression and activation of Vitamin D receptor (VDR), PKR-like ER kinase (PERK), C/EBP-homologous protein (CHOP), p53, nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4) and reactive oxygen species (ROS) in the ischemic penumbral area were detected by real-time qPCR, Western-blotting and Elisa. The results showed that after VitD3 treatment, VDR increased, ERS-related indices (PERK, CHOP) significantly decreased and ferroptosis-related indices (Nrf2, GPX4) increased. As a VDRs antagonist, pyridoxal-5-phosphate (P5P) can partially block the neuroprotective effects of VitD3. Therefore, CIRI can induce ERS and ferroptosis in the ischemic penumbra area and VitD3 may ameliorate nerve damage in CIRI rats by up-regulating VDR, alleviating p53-associated ERS and ferroptosis.
Collapse
Affiliation(s)
- Ting Song
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jian Li
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yulei Xia
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Shuai Hou
- Emergency Department, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaojun Zhang
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
7
|
Topal O, Topal BG, Baş Y, Ongan B, Sadi G, Aslan E, Yavaş BD, Pektaş MB. Impact of Juglone, a PIN1 İnhibitor, on Oral Carcinogenesis Induced by 4-Nitroquinoline-1-Oxide (4NQO) in Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1192. [PMID: 39202474 PMCID: PMC11356210 DOI: 10.3390/medicina60081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: PIN1 is overexpressed in several human cancers, including prostate cancer, breast cancer, and oral squamous carcinomas. Juglone (J), derived from walnut, was reported to selectively inhibit PIN1 by modifying its sulfhydryl groups. In this study, the potential effects of juglone, also known as PIN1 inhibitor, on oral cancer and carcinogenesis were investigated at the molecular level. Materials and Methods: 4-Nitroquinoline N-oxide (4-NQO) was used to create an oral cancer model in animals. Wistar rats were divided into five groups: Control, NQO, Juglone, NQO+J, and NQO+J*. The control group received the basal diet and tap water throughout the experiment. The NQO group received 4-NQO for 8 weeks in drinking water only. The Juglone group was administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). The NQO+J group received 4-NQO in drinking water for 8 weeks, starting 1 week after the cessation of 4-NQO treatment. They were then administered intraperitoneally in a juglone solution for 10 weeks. (1 mg/kg/day). NQO+J* group: received 4 NQO for 8 weeks in drinking water and administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). They were sacrificed at the end of the 22-week experimental period. The tongue tissues of the rats were isolated after the experiment, morphological changes were investigated by histological examinations, and the molecular apoptotic process was investigated by rt-qPCR and western blot. Results: Histological results indicate that tumors are formed in the tongue tissue with 4-NQO, and juglone treatment largely corrects the epithelial changes that developed with 4-NQO. It has been determined that apoptotic factors p53, Bax, and caspases are induced by the effect of juglone, while antiapoptotic factors such as Bcl-2 are suppressed. However, it was observed that the positive effects were more pronounced in rats given juglone together with 4-NQO. Conclusions: The use of PIN1 inhibitors such as juglone in place of existing therapeutic approaches might be a promising and novel approach to the preservation and treatment of oral cancer and carcinogenesis. However, further research is required to investigate the practical application of such inhibitors.
Collapse
Affiliation(s)
- Olgun Topal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Burcu Güçyetmez Topal
- Department of Pedodontics, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Yunus Baş
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Bünyamin Ongan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Gökhan Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey;
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Betül Demirciler Yavaş
- Private Practice, Traditional and Complementary Treatment Center, 03200 Afyonkarahisar, Turkey;
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
8
|
Xu Y, Zhou Y, Yi X, Nie X. LRP8 promotes tumorigenesis in ovarian cancer through inhibiting p53 signaling. Cell Biol Int 2024; 48:626-637. [PMID: 38263609 DOI: 10.1002/cbin.12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a high mortality rate. Low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a cell membrane receptor belonging LDL receptor family and is involved in several tumor progressions. However, there is limited understanding of how LRP8 mediates OC development. LRP8 expression level was identified in human OC tissues and cells using immunohistochemical staining and quantitative polymerase chain reaction assays, respectively. Functions of LRP8 in OC progression were evaluated by Celigo cell counting, wound healing, transwell and flow cytometry assays, and the xenograft models. The human phospho-kinase array analysis was used for screening potential signaling involved in OC development. We observed that LRP8 was overexpressed in OC tissues, and high expression of LRP8 was associated with poor prognosis of OC patients. Functionally, LRP8 knockdown remarkably reduced proliferation and migration of OC cells, and induced apoptosis and S phase cycle arrest. LRP8 deficiency attenuated in vivo tumor growth of OC cells. Moreover, the addition of p53 inhibitor partially reversed the effects of LRP8 knockdown on OC cell proliferation and apoptosis, indicating the involvement of p53 signaling in LRP8-mediated OC progression. This study confirmed that LRP8/p53 axis contributed to OC progression, which might serve as a novel potential therapeutic target for OC patients.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiling Yi
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Xiaocui Nie
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| |
Collapse
|
9
|
Aleshin VA, Graf AV, Artiukhov AV, Ksenofontov AL, Zavileyskiy LG, Maslova MV, Bunik VI. Pentylenetetrazole-Induced Seizures Are Increased after Kindling, Exhibiting Vitamin-Responsive Correlations to the Post-Seizures Behavior, Amino Acids Metabolism and Key Metabolic Regulators in the Rat Brain. Int J Mol Sci 2023; 24:12405. [PMID: 37569781 PMCID: PMC10418815 DOI: 10.3390/ijms241512405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Epilepsy is characterized by recurrent seizures due to a perturbed balance between glutamate and GABA neurotransmission. Our goal is to reveal the molecular mechanisms of the changes upon repeated challenges of this balance, suggesting knowledge-based neuroprotection. To address this goal, a set of metabolic indicators in the post-seizure rat brain cortex is compared before and after pharmacological kindling with pentylenetetrazole (PTZ). Vitamins B1 and B6 supporting energy and neurotransmitter metabolism are studied as neuroprotectors. PTZ kindling increases the seizure severity (1.3 fold, p < 0.01), elevating post-seizure rearings (1.5 fold, p = 0.03) and steps out of the walls (2 fold, p = 0.01). In the kindled vs. non-kindled rats, the post-seizure p53 level is increased 1.3 fold (p = 0.03), reciprocating a 1.4-fold (p = 0.02) decrease in the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) controlling the glutamate degradation. Further, decreased expression of deacylases SIRT3 (1.4 fold, p = 0.01) and SIRT5 (1.5 fold, p = 0.01) reciprocates increased acetylation of 15 kDa proteins 1.5 fold (p < 0.01). Finally, the kindling abrogates the stress response to multiple saline injections in the control animals, manifested in the increased activities of the pyruvate dehydrogenase complex, malic enzyme, glutamine synthetase and decreased malate dehydrogenase activity. Post-seizure animals demonstrate correlations of p53 expression to the levels of glutamate (r = 0.79, p = 0.05). The correlations of the seizure severity and duration to the levels of GABA (r = 0.59, p = 0.05) and glutamate dehydrogenase activity (r = 0.58, p = 0.02), respectively, are substituted by the correlation of the seizure latency with the OGDHC activity (r = 0.69, p < 0.01) after the vitamins administration, testifying to the vitamins-dependent impact of the kindling on glutamate/GABA metabolism. The vitamins also abrogate the correlations of behavioral parameters with seizure duration (r 0.53-0.59, p < 0.03). Thus, increased seizures and modified post-seizure behavior in rats after PTZ kindling are associated with multiple changes in the vitamin-dependent brain metabolism of amino acids, linked to key metabolic regulators: p53, OGDHC, SIRT3 and SIRT5.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
| | - Anastasia V. Graf
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, Maximova Street 4, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Shomali N, Kamrani A, Nasiri H, Heris JA, Shahabi P, Yousefi M, Mohammadinasab R, Sadeghvand S, Akbari M. An updated review of a novel method for examining P53 mutations in different forms of cancer. Pathol Res Pract 2023; 248:154585. [PMID: 37302277 DOI: 10.1016/j.prp.2023.154585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches.
Collapse
Affiliation(s)
- Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|