1
|
Fan J, Zhang Y, Sun H, Duan R, Jiang Y, Wang X, Sun Y, Luo Z, Wang P, Guan S, Liu S, Fan X, Jiao P, Wang Y, Yang J, Zhang Z, Yu H. Overexpression of soybean GmDHN9 gene enhances drought resistance of transgenic Arabidopsis. GM CROPS & FOOD 2024; 15:118-129. [PMID: 38564429 PMCID: PMC10989702 DOI: 10.1080/21645698.2024.2327116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.
Collapse
Affiliation(s)
- Jiayi Fan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yuzhe Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongji Sun
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Ruijie Duan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yushi Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xinyu Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yao Sun
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhipeng Luo
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peiwu Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Xuhong Fan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yunpeng Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jinhui Yang
- Daan Branch of Baicheng City Tobacco company of Jilin Province, Baicheng, China
| | - Zunyue Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Huiwei Yu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
3
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
4
|
Ghanmi S, Smith MA, Zaidi I, Drira M, Graether SP, Hanin M. Isolation and molecular characterization of an FSK 2-type dehydrin from Atriplex halimus. PHYTOCHEMISTRY 2023:113783. [PMID: 37406790 DOI: 10.1016/j.phytochem.2023.113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.
Collapse
Affiliation(s)
- Siwar Ghanmi
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia
| | - Margaret A Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Moez Hanin
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
5
|
Graether SP. Proteins Involved in Plant Dehydration Protection: The Late Embryogenesis Abundant Family. Biomolecules 2022; 12:biom12101380. [PMID: 36291589 PMCID: PMC9599647 DOI: 10.3390/biom12101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Drira M, Ghanmi S, Zaidi I, Brini F, Miled N, Hanin M. The heat stable protein fraction from
Opuntia ficus indica
seeds exhibits an enzyme protective effect against thermal denaturation and an antibacterial activity. Biotechnol Appl Biochem 2022; 70:593-602. [PMID: 35789501 DOI: 10.1002/bab.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.
Collapse
Affiliation(s)
- Marwa Drira
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures Faculty of Sciences of Sfax University of Sfax B.P. 1171, 3000 Sfax 3029 Tunisia
| | - Siwar Ghanmi
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| | - Ikram Zaidi
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Nabil Miled
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
- Department of Biological Sciences College of Science. University of Jeddah Asfan Road Saudi Arabia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| |
Collapse
|
7
|
Murray MR, Graether SP. Physiological, Structural, and Functional Insights Into the Cryoprotection of Membranes by the Dehydrins. FRONTIERS IN PLANT SCIENCE 2022; 13:886525. [PMID: 35574140 PMCID: PMC9096783 DOI: 10.3389/fpls.2022.886525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 06/01/2023]
Abstract
Plants can be exposed to cold temperatures and have therefore evolved several mechanisms to prevent damage caused by freezing. One of the most important targets are membranes, which are particularly susceptible to cold damage. To protect against such abiotic stresses, plants express a family of proteins known as late embryogenesis abundant (LEA) proteins. Many LEA proteins are intrinsically disordered, that is, they do not contain stable secondary or tertiary structures alone in solution. These proteins have been shown in a number of studies to protect plants from damage caused by cold, drought, salinity, and osmotic stress. In this family, the most studied proteins are the type II LEA proteins, better known as dehydrins (dehydration-induced proteins). Many physiological studies have shown that dehydrins are often located near the membrane during abiotic stress and that the expression of dehydrins helps to prevent the formation of oxidation-modified lipids and reduce the amount of electrolyte leakage, two hallmarks of damaged membranes. One of the earliest biophysical clues that dehydrins are involved in membrane cryoprotection came from in vitro studies that demonstrated a binding interaction between the protein and membranes. Subsequent work has shown that one conserved motif, known as K-segments, is involved in binding, while recent studies have used NMR to explore the residue specific structure of dehydrins when bound to membranes. The biophysical techniques also provide insight into the mechanism by which dehydrins protect the membrane from cold stress, which appears to mainly involve the lowering of the transition temperature.
Collapse
Affiliation(s)
- Marijke R. Murray
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Graduate Program in Bioinformatics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|