1
|
Kodavati M, Maloji Rao VH, Mitra J, Hegde ML. Selective Inhibition of Cytosolic PARylation via PARG99: A Targeted Approach for Mitigating FUS-associated Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625276. [PMID: 39651224 PMCID: PMC11623568 DOI: 10.1101/2024.11.25.625276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) are characterized by complex etiologies, often involving disruptions in functions of RNA/DNA binding proteins (RDBPs) such as FUS and TDP-43. The cytosolic mislocalization and aggregation of these proteins are linked to accumulation of unresolved stress granules (SGs), which exacerbate the disease progression. Poly-ADP-ribose polymerase (PARP)-mediated PARylation plays a critical role in this pathological cascade, making it a potential target for intervention. However, conventional PARP inhibitors are limited by their detrimental effects on DNA repair pathways, which are already compromised in ALS. To address this limitation, we investigated a strategy focused on targeting the cytosolic compartment by expressing the cytosol-specific, natural PAR- glycohydrolase (PARG) isoform, PARG99. Using ALS patient derived FUS mutant induced pluripotent cells (iPSCs) and differentiated neurons, we observed elevated levels of FUS in insoluble fractions in mutant cells compared to mutation-corrected isogenic lines. The insoluble FUS as well as TDP-43 levels increased further in sodium arsenite-treated or oxidatively stressed cells, correlating with accumulation of unresolved SGs. Notably, both PARG99 and PARP inhibitors reduced SG formation and insoluble FUS levels, however, PARG99 treated cells exhibited significantly lower DNA damage markers and improved viability under oxidative and arsenite stress. This study highlights the potential of PARG99 as a cytosol-specific intervention to mitigate FUS-associated toxicity while preserving critical nuclear DNA repair mechanisms, offering a promising strategy for addressing the underlying pathology of ALS and potentially other SG-associated neurodegenerative diseases.
Collapse
|
2
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
3
|
Zheng D, Zhou S, Chen L, Pang G, Yang J. A deep learning method to predict bacterial ADP-ribosyltransferase toxins. Bioinformatics 2024; 40:btae378. [PMID: 38885365 PMCID: PMC11219481 DOI: 10.1093/bioinformatics/btae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
MOTIVATION ADP-ribosylation is a critical modification involved in regulating diverse cellular processes, including chromatin structure regulation, RNA transcription, and cell death. Bacterial ADP-ribosyltransferase toxins (bARTTs) serve as potent virulence factors that orchestrate the manipulation of host cell functions to facilitate bacterial pathogenesis. Despite their pivotal role, the bioinformatic identification of novel bARTTs poses a formidable challenge due to limited verified data and the inherent sequence diversity among bARTT members. RESULTS We proposed a deep learning-based model, ARTNet, specifically engineered to predict bARTTs from bacterial genomes. Initially, we introduced an effective data augmentation method to address the issue of data scarcity in training ARTNet. Subsequently, we employed a data optimization strategy by utilizing ART-related domain subsequences instead of the primary full sequences, thereby significantly enhancing the performance of ARTNet. ARTNet achieved a Matthew's correlation coefficient (MCC) of 0.9351 and an F1-score (macro) of 0.9666 on repeated independent test datasets, outperforming three other deep learning models and six traditional machine learning models in terms of time efficiency and accuracy. Furthermore, we empirically demonstrated the ability of ARTNet to predict novel bARTTs across domain superfamilies without sequence similarity. We anticipate that ARTNet will greatly facilitate the screening and identification of novel bARTTs from bacterial genomes. AVAILABILITY AND IMPLEMENTATION ARTNet is publicly accessible at http://www.mgc.ac.cn/ARTNet/. The source code of ARTNet is freely available at https://github.com/zhengdd0422/ARTNet/.
Collapse
Affiliation(s)
- Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Guansong Pang
- School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
4
|
Zhu Z, Weng S, Zheng F, Zhao Q, Xu Y, Wu J. Identification of Poly(ADP-ribose) Polymerase 9 (PARP9) as a Potent Suppressor for Mycobacterium tuberculosis Infection. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:158-170. [PMID: 38884060 PMCID: PMC11169154 DOI: 10.1007/s43657-023-00112-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2024]
Abstract
ADP-ribosylation is a reversible and dynamic post-translational modification mediated by ADP-ribosyltransferases (ARTs). Poly(ADP-ribose) polymerases (PARPs) are an important family of human ARTs. ADP-ribosylation and PARPs have crucial functions in host-pathogen interaction, especially in viral infections. However, the functions and potential molecular mechanisms of ADP-ribosylation and PARPs in Mycobacterium infection remain unknown. In this study, bioinformatics analysis revealed significantly changed expression levels of several PARPs in tuberculosis patients compared to healthy individuals. Moreover, the expression levels of these PARPs returned to normal following tuberculosis treatment. Then, the changes in the expression levels of PARPs during Mycobacterium infection were validated in Tohoku Hospital Pediatrics-1 (THP1)-induced differentiated macrophages infected with Mycobacterium model strains bacillus Calmette-Guérin (BCG) and in human lung adenocarcinoma A549 cells infected with Mycobacterium smegmatis (Ms), respectively. The mRNA levels of PARP9, PARP10, PARP12, and PARP14 were most significantly increased during infection, with corresponding increases in protein levels, indicating the possible biological functions of these PARPs during Mycobacterium infection. In addition, the biological function of host PARP9 in Mycobacterium infection was further studied. PARP9 deficiency significantly increased the infection efficiency and intracellular proliferation ability of Ms, which was reversed by the reconstruction of PARP9. Collectively, this study updates the understanding of changes in PARP expression during Mycobacterium infection and provides evidence supporting PARP9 as a potent suppressor for Mycobacterium infection. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00112-2.
Collapse
Affiliation(s)
- Zhenyu Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Fen Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Qi Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
5
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
6
|
Lu H, Shen H, Mao L, Mussap M, Song L. A ferroptosis-related ceRNA network for investigating the molecular mechanisms and the treatment of neonatal hypoxic-ischemic encephalopathy. Transl Pediatr 2024; 13:119-136. [PMID: 38323182 PMCID: PMC10839276 DOI: 10.21037/tp-23-596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Background Neonatal hypoxic-ischemic brain damage (HIBD) is a clinical syndrome causing brain injury in newborns with obscure etiology. Increasing evidence suggests that ferroptosis plays a role in HIBD. This study aimed to clarify the key ferroptosis-related genes (FRGs) of HIBD, construct a long non-coding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network, and further investigate the pathogenesis of HIBD. Methods Gene expression data were downloaded from the Gene Expression Omnibus and FerrDb databases. The differentially expressed lncRNAs and FRGs were screened, and the related miRNAs and mRNAs were predicted. The obtained mRNA was intersected with the differentially expressed FRGs (DE-FRGs) to identify the key DE-FRGs. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts method was applied to analyze the immune cell infiltration level and the relationship between key genes and immune cells. Results Gene differential expression analysis revealed that 1,178 lncRNAs, 207 miRNAs, and 647 mRNAs were differentially expressed in the blood of HIBD patients in comparison to healthy controls. The correlations of the lncRNAs, miRNAs, and mRNAs lead to the establishment of a competing endogenous RNA (ceRNA) network associated with ferroptosis in HIBD. Further validation using an external dataset and quantitative real-time polymerase chain reaction (PCR) analysis of brain tissues from hypoxic-ischemic encephalopathy rats confirmed the expression patterns of three key genes, including HMOX1, MYCN, and QSOX1. Meanwhile, the three key genes were closely correlated with the infiltration of multiple immune cells and might affect the function of HIBD regulatory genes such as CPT2 and GCK. In addition, drug prediction suggested that four drugs, including cephaeline, emetine, mestranol, and sulmazole, might alleviate HIBD. Conclusions Our study established a ceRNA network, identified three key genes, and predicted four drugs that are associated with ferroptosis in HIBD, which provides new ideas for the investigation of the disease mechanisms and might facilitate the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Hongyi Lu
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| | - Haiyan Shen
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Lei Song
- Department of Pediatrics, Nantong First People’s Hospital (The Second Affiliated Hospital of Nantong University), Nantong, China
| |
Collapse
|
7
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
8
|
Debar L, Ishak L, Moretton A, Anoosheh S, Morel F, Jenninger L, Balandier I, Vernet P, Hofer A, van den Wildenberg S, Farge G. NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities. Mitochondrion 2023:S1567-7249(23)00054-5. [PMID: 37343711 DOI: 10.1016/j.mito.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.
Collapse
Affiliation(s)
- Louis Debar
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Layal Ishak
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Amandine Moretton
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Saber Anoosheh
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-90187 Umeå, Sweden
| | - Frederic Morel
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Isabelle Balandier
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Anders Hofer
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-90187 Umeå, Sweden
| | - Siet van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France; Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France.
| |
Collapse
|
9
|
Zhang C, Xue P, Ke J, Cai Q. Development of Ferroptosis-Associated ceRNA Network in Periodontitis. Int Dent J 2023; 73:186-194. [PMID: 35810010 PMCID: PMC10023542 DOI: 10.1016/j.identj.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Periodontitis is a chronic inflammatory illness that may lead to tooth loosening and even loss, and its pathogenesis is not fully understood. Ferroptosis is an iron-dependent, regulated cell death. The present study aims to find the key ferroptosis-related genes (FRGs) in periodontitis and develop an mRNA-miRNA-lncRNA network to deeply explore the pathogenesis of periodontitis. METHODS Data from the Gene Expression Omnibus (GEO) database and FerrDb database were downloaded to discover the differentially expressed mRNA, miRNA, and FRGs. Functional enrichment analysis was conducted for the differentially expressed FRGs (DE-FRGs), including gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network analysis. Targetscan and miRtarbase were used to estimate the miRNAs that DE-FRGs may interact with, whilst StarBase v3.0 was used for lncRNA-miRNA interaction. RESULTS Seven DE-FRGs were identified through differential expression analysis. Interleukin 1 beta (IL1B) interacted with XBP1 and MMP13 in the PPI network. After taking the intersection between DE-miRNAs and predicted miRNAs, a ceRNA network containing IL1B, has-miR-185, has-miR-204, has-miR-211, has-miR-4306, and 28 lncRNAs was established. CONCLUSIONS Seven FRGs in periodontitis were identified, which might promote deeper understanding of ferroptosis in periodontitis.
Collapse
Affiliation(s)
- Churen Zhang
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China.
| | - Pengxin Xue
- The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University.
| | - Jianguo Ke
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China.
| | - Qiaoling Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China.
| |
Collapse
|
10
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|