1
|
Kheder RK, Darweesh O, Hussen BM, Abdullah SR, Basiri A, Taheri M. Mesenchymal stromal cells (MSCs) as a therapeutic agent of inflammatory disease and infectious COVID-19 virus: live or dead mesenchymal? Mol Biol Rep 2024; 51:295. [PMID: 38340168 DOI: 10.1007/s11033-023-09174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
The COVID-19 infection is a worldwide disease that causes numerous immune-inflammatory disorders, tissue damage, and lung dysfunction. COVID-19 vaccines, including those from Pfizer, AstraZeneca, and Sinopharm, are available globally as effective interventions for combating the disease. The severity of COVID-19 can be most effectively reduced by mesenchymal stromal cells (MSCs) because they possess anti-inflammatory activity and can reverse lung dysfunction. MSCs can be harvested from various sources, such as adipose tissue, bone marrow, peripheral blood, inner organs, and neonatal tissues. The regulation of inflammatory cytokines is crucial in inhibiting inflammatory diseases and promoting the presence of anti-inflammatory cytokines for infectious diseases. MSCs have been employed as therapeutic agents for tissue damage, diabetes, autoimmune diseases, and COVID-19 patients. Our research aimed to determine whether live or dead MSCs are more suitable for the treatment of COVID-19 patients. Our findings concluded that dead MSCs, when directly administered to the patient, offer advantages over viable MSCs due to their extended presence and higher levels of immune regulation, such as T-reg, B-reg, and IL-10, compared to live MSCs. Additionally, dead and apoptotic MSCs are likely to be more readily captured by monocytes and macrophages, prolonging their presence compared to live MSCs.
Collapse
Affiliation(s)
- Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Scineces, Tehran, Iran
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Csobonyeiova M, Smolinska V, Harsanyi S, Ivantysyn M, Klein M. The Immunomodulatory Role of Cell-Free Approaches in SARS-CoV-2-Induced Cytokine Storm-A Powerful Therapeutic Tool for COVID-19 Patients. Biomedicines 2023; 11:1736. [PMID: 37371831 DOI: 10.3390/biomedicines11061736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, there is still no effective and definitive cure for the coronavirus disease 2019 (COVID-19) caused by the infection of the novel highly contagious severe acute respiratory syndrome virus (SARS-CoV-2), whose sudden outbreak was recorded for the first time in China in late December 2019. Soon after, COVID-19 affected not only the vast majority of China's population but the whole world and caused a global health public crisis as a new pandemic. It is well known that viral infection can cause acute respiratory distress syndrome (ARDS) and, in severe cases, can even be lethal. Behind the inflammatory process lies the so-called cytokine storm (CS), which activates various inflammatory cytokines that damage numerous organ tissues. Since the first outbreak of SARS-CoV-2, various research groups have been intensively trying to investigate the best treatment options; however, only limited outcomes have been achieved. One of the most promising strategies represents using either stem cells, such as mesenchymal stem cells (MSCs)/induced pluripotent stem cells (iPSCs), or, more recently, using cell-free approaches involving conditioned media (CMs) and their content, such as extracellular vesicles (EVs) (e.g., exosomes or miRNAs) derived from stem cells. As key mediators of intracellular communication, exosomes carry a cocktail of different molecules with anti-inflammatory effects and immunomodulatory capacity. Our comprehensive review outlines the complex inflammatory process responsible for the CS, summarizes the present results of cell-free-based pre-clinical and clinical studies for COVID-19 treatment, and discusses their future perspectives for therapeutic applications.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Apel, Dunajská 52, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
| | - Veronika Smolinska
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | | | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
3
|
Lapuente JP, Gómez G, Marco-Brualla J, Fernández P, Desportes P, Sanz J, García-Gil M, Bermejo F, San Martín JV, Algaba A, De Gregorio JC, Lapuente D, De Gregorio A, Lapuente B, Gómez S, Andrés MDLV, Anel A. Evaluation in a Cytokine Storm Model in Vivo of the Safety and Efficacy of Intravenous Administration of PRS CK STORM (Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells). Biomedicines 2022; 10:biomedicines10051094. [PMID: 35625831 PMCID: PMC9138962 DOI: 10.3390/biomedicines10051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Our research group has been developing a series of biological drugs produced by coculture techniques with M2-polarized macrophages with different primary tissue cells and/or mesenchymal stromal cells (MSC), generally from fat, to produce anti-inflammatory and anti-fibrotic effects, avoiding the overexpression of pro-inflammatory cytokines by the innate immune system at a given time. One of these products is the drug PRS CK STORM, a medium conditioned by allogenic M2-polarized macrophages, from coculture, with those macrophages M2 with MSC from fat, whose composition, in vitro safety, and efficacy we studied. In the present work, we publish the results obtained in terms of safety (pharmacodynamics and pharmacokinetics) and efficacy of the intravenous application of this biological drug in a murine model of cytokine storm associated with severe infectious processes, including those associated with COVID-19. The results demonstrate the safety and high efficacy of PRS CK STORM as an intravenous drug to prevent and treat the cytokine storm associated with infectious processes, including COVID-19.
Collapse
Affiliation(s)
- Juan Pedro Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
- Correspondence: (J.P.L.); (A.A.)
| | - Gonzalo Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Joaquín Marco-Brualla
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Pablo Fernández
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Paula Desportes
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | - Jara Sanz
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | | | - Fernando Bermejo
- Digestive Department, Fuenlabrada Hospital, 28942 Madrid, Spain;
- Medicine Department, University Rey Juan Carlos, 28942 Madrid, Spain
| | | | - Alicia Algaba
- Clinical Assay Department, Fuelabrada Hospital, 28942 Madrid, Spain;
| | - Juan Carlos De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Daniel Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Almudena De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Belén Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Sergio Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - María de las Viñas Andrés
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Alberto Anel
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
- Correspondence: (J.P.L.); (A.A.)
| |
Collapse
|