1
|
Liang X, Zhang T, Cheng X, Yuan H, Yang N, Yi Y, Li X, Zhang F, Sun J, Li Z, Wang X. Sesamin alleviates lipid accumulation induced by elaidic acid in L02 cells through TFEB regulated autophagy. Front Nutr 2024; 11:1511682. [PMID: 39758315 PMCID: PMC11695222 DOI: 10.3389/fnut.2024.1511682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1). Methods L02 cells, an important tool in scientific researches due to its high proliferation ability, preserved hepatocyte function, and specificity in response to exogenous factors, were incubated with 9-trans-C18:1 to establish an in vitro model of NAFLD in our study. The lipid accumulation in cells and the morphology of mitochondria and autolysosomes were observed by Oil Red O staining and transmission electron microscopy. The effects of sesamin on oxidative stress, apoptosis, mitochondrial function, autophagy as well as related protein levels in L02 cells were also investigated in the presence of 9-trans-C18:1. Results The results showed that sesamin significantly accelerated the autophagy flux of L02 cells induced by 9-trans-C18:1 as well as elevated protein levels of transcription factor EB (TFEB) and its downstream target lysosome-associated membrane protein 1(LAMP1), along with up-regulated levels of TFEB and LAMP1 in the nucleus indicated by Immunofluorescence. In addition, PTEN-induced putative kinase 1 and Parkin mediated mitophagy was activated by sesamin. The direct inhibitor Eltrombopag and indirect inhibitor MHY1485 of TFEB reversed the protective effect of sesamin, suggesting the involvement of autophagy in the lipid-lowering process of sesamin. Discussion This work suggests that sesamin regulates autophagy through TFEB to alleviate lipid accumulation in L02 cells induced by 9-trans-C18:1, providing a potential target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Ning Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanlei Yi
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xiaozhou Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xia Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Li L, Lin J, Huang C, Liu J, Yuan Y, Liu Z, Li Y, Li W, Diao A. The TFEB activator clomiphene citrate ameliorates lipid metabolic syndrome pathology by activating lipophagy and lipolysis. Biochem Pharmacol 2024; 232:116694. [PMID: 39643124 DOI: 10.1016/j.bcp.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The balance between lipid synthesis and lipid catabolism is critical to maintain energy homeostasis. Lipophagy and lipolysis are two important pathways for lipid selective catabolism. Defects in lipophagy and lipolysis are linked to lipid metabolic diseases. Transcription factor EB (TFEB) is a master regulator of autophagy and lysosome biogenesis, as well as lipid metabolism by promoting expression of genes encoding fat catabolic lipases. Therefore, targeting TFEB provides a novel potential strategy for the treatment of lipid metabolic diseases. In this study, we showed that the TFEB activator clomiphene citrate (CC) activated the autophagy-lysosome and lipolysis pathways, and promoted degradation of lipid droplets induced by the free fatty acids oleate and palmitate in HepG2 cells. Moreover, CC treatment promoted lipid catabolism and attenuated obesity, restored lipid levels, blood glucose levels and insulin resistance, hepatocellular injury and hepatic steatosis, as well as liver inflammation in the HFD fed mice. In addition, we found that En-CC, a trans-isomer of CC, displayed less toxicity and more efficient activation of TFEB. Consistent with CC, En-CC treatment improved lipid metabolic syndrome pathology. These findings demonstrate that CC promotes clearance of lipids and ameliorates HFD-induced lipid metabolic syndrome pathology through activating TFEB-mediated lipophagy and lipolysis, indicating that CC has the potential to be used to treat lipid metabolic diseases.
Collapse
Affiliation(s)
- Lu Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jieru Lin
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunhuan Huang
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiamiao Liu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yi Yuan
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wei Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010100, China.
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Li C, Li C, Wang Y, You S, Man KY, Fan Z, Yu Q, Zhang M, Cheng KKY, Mok DKW, Chan SW, Zhang H. Polygoni Cuspidati Rhizoma et Radix extract activates TFEB and alleviates hepatic steatosis by promoting autophagy. Life Sci 2024; 359:123158. [PMID: 39454991 DOI: 10.1016/j.lfs.2024.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hepatic steatosis, characterized by excessive lipid accumulation in the liver, can be ameliorated by autophagy activation. Polygoni Cuspidati rhizome et Radix (PCRR), traditionally used to treat atherosclerosis, hepatitis, and gallstones, has recently demonstrated anti-steatotic effects in the liver. However, the active compounds and underlying mechanisms remain unclear. This study investigated whether PCRR water extract improves steatosis by modulating hepatic autophagic flux. We found that PCRR water extract promoted autophagic flux, enhanced lysosomal biogenesis, and alleviated lipid accumulation in the liver cell lines as well as in the livers of rats with steatosis. Mechanistically, PCRR water extract inhibited mechanistic target of rapamycin complex 1 (mTORC1) activity, leading to dephosphorylation and subsequent nuclear translocation of transcription factor EB (TFEB), a key regulator of lipophagy. TFEB knockdown attenuated PCRR-mediated lipophagy promotion in the liver cell lines. Furthermore, chloroquine (CQ)-mediated autophagy blockage abrogated the therapeutic effect of PCRR against hepatic steatosis in high-fat diet (HFD)-fed rats. These findings suggest that PCRR water extract acts as a novel autophagy enhancer and holds therapeutic potential for hepatic steatosis.
Collapse
Affiliation(s)
- Chang Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chenyu Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sikun You
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Ka Yi Man
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhunming Fan
- Institute of High Energy Physics, CAS, Beijing 100000, China; Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
| | - Qian Yu
- Tumor Immunology and Cytotherapy of Medical Research Center, Center for GI Cancer Diagnosis and Treatment, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Meng Zhang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Shun-Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Zhao J, Gao G, Ding J, Liu W, Wang T, Zhao L, Xu J, Zhang Z, Zhang X, Xie Z. Astragaloside I Promotes Lipophagy and Mitochondrial Biogenesis to Improve Hyperlipidemia by Regulating Akt/mTOR/TFEB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21548-21559. [PMID: 39226078 DOI: 10.1021/acs.jafc.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The simultaneous enhancement of lipophagy and mitochondrial biogenesis has emerged as a promising strategy for lipid lowering. The transcription factor EB (TFEB) exhibits a dual role, whereby it facilitates the degradation of lipid droplets (LDs) through the process of lipophagy while simultaneously stimulating mitochondrial biogenesis to support the utilization of lipophagy products. The purpose of this study was to explore the effect of astragaloside I (AS I) on hyperlipidemia and elucidate its underlying mechanism. AS I improved serum total cholesterol and triglyceride levels and reduced hepatic steatosis and lipid accumulation in db/db mice. AS I enhanced the fluorescence colocalization of LDs and autophagosomes and promoted the proteins and genes related to the autolysosome. Moreover, AS I increased the expression of mitochondrial biogenesis-related proteins and genes, indicating that AS I promoted lipophagy and mitochondrial biogenesis. Mechanistically, AS I inhibits the protein level of p-TFEB (ser211) expression and promotes TFEB nuclear translocation. The activation of TFEB by AS I was impeded upon the introduction of the mammalian target of rapamycin (mTOR) agonist MHY1485. The inhibition of p-mTOR by AS I and the activation of TFEB were no longer observed after administration of the Akt agonist SC-79, which indicated that AS I activated TFEB to promote lipophagy-dependent on the Akt/mTOR pathway and may be a potentially effective pharmaceutical and food additive for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Jie Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Gai Gao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei Liu
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tao Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Yang S, Ren X, Liu J, Lei Y, Li M, Wang F, Cheng S, Ying J, Ding J, Chen X. Knockdown of the Clock gene in the liver aggravates MASLD in mice via inhibiting lipophagy. Mol Cell Biochem 2024:10.1007/s11010-024-05109-7. [PMID: 39276171 DOI: 10.1007/s11010-024-05109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.
Collapse
Affiliation(s)
- Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xinxin Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Jia Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Yan Lei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Minqian Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Shuting Cheng
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Ding
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730050, China
| | - Xiaohui Chen
- Gansu Province Maternity and Child Health Hospital (Gansu Province Central Hospital), Lanzhou, 730050, China
| |
Collapse
|
6
|
Lu J, Su P, Zhao F, Yu K, Yang X, Lv H, Wang D, Zhang J. The role of TFEB-mediated autophagy-lysosome dysfunction in manganese neurotoxicity. Curr Res Toxicol 2024; 7:100193. [PMID: 39381497 PMCID: PMC11459403 DOI: 10.1016/j.crtox.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autophagy-lysosome dysfunction as a pivotal factor in manganese-induced neurotoxicity. Our research illuminated the molecular mechanisms behind TFEB's role in manganese-triggered neuronal autophagy dysfunction, offering insights into the cellular and molecular mechanisms of manganese-induced abnormal protein accumulation. This study lays a significant theoretical foundation for future endeavors aimed at safeguarding against manganese neurotoxicity. Furthermore, TFEB emerges as a potential early molecular biomarker for manganese exposure, providing a solid basis for preemptive protection and clinical treatment for populations exposed to manganese.
Collapse
Affiliation(s)
- Jiaqiao Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Kailun Yu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Xunbo Yang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Hui Lv
- Department of Health Service Teaching and Research, Dalian Health Service Training Center of Chinese PLA, Da Lian 116001, China
| | - Diya Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| |
Collapse
|
7
|
Wu J, Guan F, Huang H, Chen H, Liu Y, Zhang S, Li M, Chen J. Tetrahydrocurcumin ameliorates hepatic steatosis by restoring hepatocytes lipophagy through mTORC1-TFEB pathway in nonalcoholic steatohepatitis. Biomed Pharmacother 2024; 178:117297. [PMID: 39137653 DOI: 10.1016/j.biopha.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To investigate the therapeutic effect and underlying mechanism of tetrahydrocurcumin (THC) on nonalcoholic steatohepatitis (NASH) induced by high-fat diet (HFD). METHODS NASH rat model was established through long-term feeding HFD, and the steatosis cell model was stimulated via palmitate acid (PA). The therapeutic effect of THC was evaluated in terms of liver function, lipid metabolism, liver pathophysiology, inflammation and oxidative stress in vivo, and lipid accumulation in vitro. The alteration in lipophagy was identified by using western blot and immunofluorescence. mTORC1-TFEB signaling pathway was measured by qRT-PCR, western blot and protein-ligand docking. In addition, chloroquine and MHY1485 were further introduced to validate the effect of THC on lipophagy and mTORC1-TFEB signaling pathway, respectively. RESULTS THC effectively improved hepatic steatosis, inflammation and oxidative stress in NASH rats, and reduced lipid accumulation in steatosis L02 cells and Hep G2 cells. THC promoted lipophagy with increasing LC3B-II as well as decreasing P62 expression via lysosomal biogenesis upregulation, which was greatly weakened after chloroquine intervention. mTORC1-TFEB is a critical pathway for regulating lysosome in autophagy, THC treatment induced TFEB nucleus translocation via inhibiting mTORC1 to upregulate lysosomal biogenesis. However, these effects were partly eliminated by mTORC1 activator MHY1485. CONCLUSION THC restored lipophagy to reduce lipid accumulation by regulating mTORC1-TFEB pathway in NASH rats and steatosis hepatocytes. These findings suggested that THC represents a therapeutic candidate for NASH treatment.
Collapse
Affiliation(s)
- Jiazhen Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Fengkun Guan
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525022, PR China
| | - Haipiao Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Hanbin Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Shangbin Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Muxia Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| | - Jianping Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| |
Collapse
|
8
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
9
|
Balboa E, Saud F, Parra-Ruiz C, de la Fuente M, Landskron G, Zanlungo S. Exploring the lutein therapeutic potential in steatotic liver disease: mechanistic insights and future directions. Front Pharmacol 2024; 15:1406784. [PMID: 38978979 PMCID: PMC11228318 DOI: 10.3389/fphar.2024.1406784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.
Collapse
Affiliation(s)
- Elisa Balboa
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Faride Saud
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Glauben Landskron
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
11
|
Xiao F, Chen C, Zhang W, Wang J, Wu K. FOXO3/Rab7-Mediated Lipophagy and Its Role in Zn-Induced Lipid Metabolism in Yellow Catfish ( Pelteobagrus fulvidraco). Genes (Basel) 2024; 15:334. [PMID: 38540393 PMCID: PMC10969980 DOI: 10.3390/genes15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA β-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.
Collapse
Affiliation(s)
- Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Wuxiao Zhang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| |
Collapse
|
12
|
Song H, Zhao Z, Ma L, Zhao W, Hu Y, Song Y. Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop. Oncogene 2024; 43:821-836. [PMID: 38280941 PMCID: PMC10920198 DOI: 10.1038/s41388-024-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Huachen Song
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. LIVER RESEARCH 2023; 7:304-320. [DOI: 10.1016/j.livres.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Wang C, Wu R, Zhang S, Gong L, Fu K, Yao C, Peng C, Li Y. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives. Biomed Pharmacother 2023; 166:115410. [PMID: 37659207 DOI: 10.1016/j.biopha.2023.115410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Forsythiae Fructus is a traditional Chinese medicine frequently in clinics. It is extensive in the treatment of various inflammation-related diseases and is renowned as 'the holy medicine of sores'. Phillygenin (C21H24O6, PHI) is a component of lignan that has been extracted from Forsythiae Fructus and exhibits notable biological activity. Modern pharmacological studies have confirmed that PHI demonstrates significant activities in the treatment of various diseases, including inflammatory diseases, liver diseases, cancer, bacterial infection and virus infection. Therefore, this review comprehensively summarizes the pharmacological effects of PHI up to June 2023 by searching PubMed, Web of Science, Science Direct, CNKI, and SciFinder databases. According to the data, PHI shows remarkable anti-inflammatory, antioxidant, hepatoprotective, antitumour, antibacterial, antiviral, immunoregulatory, analgesic, antihypertensive and vasodilatory activities. More importantly, NF-κB, MAPK, PI3K/AKT, P2X7R/NLRP3, Nrf2-ARE, JAK/STAT, Ca2+-calcineurin-TFEB, TGF-β/Smads, Notch1 and AMPK/ERK/NF-κB signaling pathways are considered as important molecular targets for PHI to exert these pharmacological activities. Studies of its toxicity and pharmacokinetic properties have shown that PHI has very low toxicity, incomplete absorption in vivo and low oral bioavailability. In addition, the physico-chemical properties, new formulations, derivatives and existing challenges and prospects of PHI are also reviewed and discussed in this paper, aiming to provide direction and rationale for the further development and clinical application of PHI.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
17
|
Chen J, Zheng D, Cai Z, Zhong B, Zhang H, Pan Z, Ling X, Han Y, Meng J, Li H, Chen X, Zhang H, Liu L. Increased DNMT1 Involvement in the Activation of LO2 Cell Death Induced by Silver Nanoparticles via Promoting TFEB-Dependent Autophagy. TOXICS 2023; 11:751. [PMID: 37755761 PMCID: PMC10537645 DOI: 10.3390/toxics11090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The accumulation of exogenous silver nanoparticles (AgNPs) will terminally bring about liver injury, including cell death, where DNA methylation tends to be a crucial epigenetic modulator. The change in the cell autophagy level verified to be closely associated with hepatocyte death has been followed with wide interest. But the molecular toxicological mechanisms of AgNPs in relation to DNA methylation, autophagy, and cell death remain inconclusive. To address the issue above, in LO2 cells treated with increasing concentrations of AgNPs (0, 5, 10, and 20 μg/mL), a cell cytotoxicity assay was performed to analyze the level of cell death, which also helped to choose an optimal concentration for next experiments. An immunofluorescence assay was used to determine the autophagic flux as well as TFEB translocation, with qRT-PCR and western blot being used to analyze the expression level of autophagy-related genes and proteins. According to our findings, in the determination of cell viability, 20 μg/mL (AgNPs) was adopted as the best working concentration. LO2 cell death, autophagy, and TFEB nuclear translocation were induced by AgNPs, which could be inhibited by lysosome inhibitor chloroquine (CQ) or siRNA specific for TFEB. Moreover, AgNP exposure led to DNA hypermethylation, with DNMT1 taking part mainly, which could be obviously prevented by 5-Aza-2'-deoxycytidine (5-AzaC) or trichostatin A (TSA) treatment or DNMT1 knockout in LO2 cells. Our studies suggest that through TFEB-dependent cell autophagy, increased DNMT1 may facilitate cell death induced by AgNPs.
Collapse
Affiliation(s)
- Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Dongyan Zheng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Ziwei Cai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Huifang Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Xiaobing Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - He Zhang
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| | - Linhua Liu
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (D.Z.); (Z.C.); (B.Z.); (H.Z.); (Z.P.); (X.L.); (Y.H.); (J.M.); (H.L.); (X.C.)
| |
Collapse
|
18
|
Mubariz F, Saadin A, Lingenfelter N, Sarkar C, Banerjee A, Lipinski MM, Awad O. Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson's disease. Front Neurosci 2023; 17:1152503. [PMID: 37332877 PMCID: PMC10272450 DOI: 10.3389/fnins.2023.1152503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mutations in the GBA1 gene are the single most frequent genetic risk factor for Parkinson's disease (PD). Neurodegenerative changes in GBA1-associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the effect of GBA1 mutations on the transcription factor EB (TFEB), the master regulator of the autophagy-lysosomal pathway (ALP). Using PD patients' induced-pluripotent stem cells (iPSCs), we examined TFEB activity and regulation of the ALP in dopaminergic neuronal cultures generated from iPSC lines harboring heterozygous GBA1 mutations and the CRISPR/Cas9-corrected isogenic controls. Our data showed a significant decrease in TFEB transcriptional activity and attenuated expression of many genes in the CLEAR network in GBA1 mutant neurons, but not in the isogenic gene-corrected cells. In PD neurons, we also detected increased activity of the mammalian target of rapamycin complex1 (mTORC1), the main upstream negative regulator of TFEB. Increased mTORC1 activity resulted in excess TFEB phosphorylation and decreased nuclear translocation. Pharmacological mTOR inhibition restored TFEB activity, decreased ER stress and reduced α-synuclein accumulation, indicating improvement of neuronal protiostasis. Moreover, treatment with the lipid substrate reducing compound Genz-123346, decreased mTORC1 activity and increased TFEB expression in the mutant neurons, suggesting that mTORC1-TFEB alterations are linked to the lipid substrate accumulation. Our study unveils a new mechanism contributing to PD susceptibility by GBA1 mutations in which deregulation of the mTORC1-TFEB axis mediates ALP dysfunction and subsequent proteinopathy. It also indicates that pharmacological restoration of TFEB activity could be a promising therapeutic approach in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Fahad Mubariz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas Lingenfelter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chinmoy Sarkar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marta M. Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Ma K, Liu W, Liu Q, Hu P, Bai L, Yu M, Yang Y. Naringenin facilitates M2 macrophage polarization after myocardial ischemia-reperfusion by promoting nuclear translocation of transcription factor EB and inhibiting the NLRP3 inflammasome pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1405-1419. [PMID: 36988289 DOI: 10.1002/tox.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) remains an unsolved puzzle in medical circles. Naringenin (NAR) is a flavonoid with cardioprotective potential. The purpose of this article was to discuss the protective mechanism of NAR in MIRI by regulating macrophage polarization. The MIRI mouse model was established and perfused with NAR before surgery. In the in vitro experiment, macrophages RAW264.7 were treated with lipopolysaccharide to induce M1 polarization after pretreatment with NAR. Rescue experiments were carried out to validate the functions of transcription factor EB (TFEB), the NLR pyrin domain containing 3 (NLRP3) inflammasome, and autophagy in macrophage polarization. NAR reduced histopathological injury and infarction of myocardial tissues in MIRI mice, inhibited M1 polarization and promoted M2 polarization of macrophages, diminished levels of pro-inflammatory factors, and augmented levels of anti-inflammatory factors. NAR facilitated TFEB nuclear translocation and inhibited the NLRP3 inflammasome pathway. Silencing TFEB or Nigericin partly nullified the effect of NAR on macrophage polarization. NAR increased autophagosome formation, autophagy flux, and autophagy level. Autophagy inhibitor 3-methyladenine partly invalidated the inhibition of NAR on the NLRP3 inflammasome pathway. In animal experiments, NAR protected MIRI mice through the TFEB-autophagy-NLRP3 inflammasome pathway. Collectively, NAR inhibited NLRP3 inflammasome activation and facilitated M2 macrophage polarization by stimulating TFEB nuclear translocation, thus protecting against MIRI.
Collapse
Affiliation(s)
- Kuiying Ma
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Wenqing Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Qi Liu
- Emergency Department, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Pengfei Hu
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Lingyu Bai
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Miao Yu
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| | - Yan Yang
- Department of General Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao City, China
| |
Collapse
|
20
|
Song Y, Wang B, Wang W, Shi Q. Regulatory effect of orexin system on various diseases through mTOR signaling pathway. Trends Endocrinol Metab 2023; 34:292-302. [PMID: 36934048 DOI: 10.1016/j.tem.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Orexin (OX)A and OXB are a pair of neuropeptides secreted by orexin-producing neurons in the lateral hypothalamus. The orexin system can regulate many physiological processes through these two receptor pathways, such as feeding behavior, sleep/wake state, energy homeostasis, reward, and the coordination of emotion. Mammalian target of rapamycin (mTOR) can coordinate upstream signals with downstream effectors, thereby regulating fundamental cellular processes and also plays an essential role in the signaling network downstream of the orexin system. In turn, the orexin system can activate mTOR. Here, we review the association of the orexin system with the mTOR signaling pathway mainly by discussing that drugs in various diseases exert their effects on the orexin system, indirectly affecting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Beibei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenjun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis. Front Genet 2023; 14:998035. [PMID: 36793898 PMCID: PMC9923090 DOI: 10.3389/fgene.2023.998035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Autophagy pathway involves maintaining intracellular homeostasis by regulating the degradation of cytoplasmic components. Disfunction of autophagic process has been confirmed to be critical mechanism in many diseases, including cancer, inflammation, infection, degeneration and metabolic disorders. Recent studies have shown that autophagy is one of the early events in acute pancreatitis. Impaired autophagy promotes the abnormal activation of zymogen granules and results in apoptosis and necrosis of exocrine pancreas. Furthermore, multiple signal paths involve progression of acute pancreatitis by regulating autophagy pathway. This article provides a comprehensive review of the recent advances in epigenetic regulation of autophagy and the role of autophagy in acute pancreatitis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| |
Collapse
|
22
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
23
|
Chen CH, Hsia CC, Hu PA, Yeh CH, Chen CT, Peng CL, Wang CH, Lee TS. Bromelain Ameliorates Atherosclerosis by Activating the TFEB-Mediated Autophagy and Antioxidant Pathways. Antioxidants (Basel) 2022; 12:72. [PMID: 36670934 PMCID: PMC9855131 DOI: 10.3390/antiox12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bromelain, a cysteine protease found in pineapple, has beneficial effects in the treatment of inflammatory diseases; however, its effects in cardiovascular pathophysiology are not fully understood. We investigated the effect of bromelain on atherosclerosis and its regulatory mechanisms in hyperlipidemia and atheroprone apolipoprotein E-null (apoe-/-) mice. Bromelain was orally administered to 16-week-old male apoe-/- mice for four weeks. Daily bromelain administration decreased hyperlipidemia and aortic inflammation, leading to atherosclerosis retardation in apoe-/- mice. Moreover, hepatic lipid accumulation was decreased by the promotion of cholesteryl ester hydrolysis and autophagy through the AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated upregulation of autophagy- and antioxidant-related proteins. Moreover, bromelain decreased oxidative stress by increasing the antioxidant capacity and protein expression of antioxidant proteins while downregulating the protein expression of NADPH oxidases and decreasing the production of reactive oxygen species. Therefore, AMPK/TFEB signaling may be crucial in bromelain-mediated anti-hyperlipidemia, antioxidant, and anti-inflammatory effects, effecting the amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Chung Hsia
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Po-An Hu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chung-Hsin Yeh
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chun-Tang Chen
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Cheng-Liang Peng
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10051, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
24
|
Zhang D, Xu Y, Chen H, Wang D, Geng Z, Chen Y, Chen Y, Xiong D, Yang R, Liu X, Zhang Y, Xiang P, Ma L, Liu J. Fagopyrum dibotrys extract alleviates hepatic steatosis and insulin resistance, and alters autophagy and gut microbiota diversity in mouse models of high-fat diet-induced non-alcoholic fatty liver disease. Front Nutr 2022; 9:993501. [PMID: 36451739 PMCID: PMC9704541 DOI: 10.3389/fnut.2022.993501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 09/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major global health concern with increasing prevalence, with a lack of currently available effective treatment options; thus, the investigation of novel therapeutic approaches is necessary. The study aimed to investigate the outcomes and mechanisms of action of Fagopyrum dibotrys extract (FDE) in a high-fat diet (HFD)-induced mouse model of obesity. The findings showed that FDE supplementation attenuated glucose tolerance, insulin resistance (IR), hepatic steatosis, and abnormal lipid metabolism. In addition, FDE also promoted autophagic activity and inhibited the phosphorylation of transcription factor EB in HFD-fed mice. Furthermore, gut microbiota characterization via 16S rRNA sequencing revealed that the supplementation of FDE increased Bacteroidetes and Verrucomicrobia populations while decreased Firmicutes, thus modifying the gut microbiome. FDE also increased the relative abundance of Akkermansia. Our findings suggest that FDE may protect against HFD-induced NAFLD by activating autophagy and alleviating dysbiosis in the gut microbiome. FDE may be beneficial as a nutraceutical treatment for NAFLD.
Collapse
Affiliation(s)
- Dan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yongfang Xu
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Hang Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Zuotao Geng
- Lijiang Women and Children’s Hospital, Lijiang Maternity and Child Health Hospital, Lijiang, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yan Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Di Xiong
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Rongna Yang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Xiaoting Liu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yuke Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Ping Xiang
- School of Ecology and Environment, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Gong Q, Zhang X, Sun Y, Shen J, Li X, Xue C, Liu Z. Transcription factor EB inhibits non-alcoholic fatty liver disease through fibroblast growth factor 21. J Mol Med (Berl) 2022; 100:1587-1597. [PMID: 36102936 DOI: 10.1007/s00109-022-02256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
We sought to explore the potential role of transcription factor EB (TFEB) in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). An NAFLD mouse model was established by high-fat diet induction, and then "gain of function" and "loss of function" experiments were performed to determine the potential protective effects of TFEB on NAFLD using TFEB knockdown and TFEB-overexpressed mice. The mediating effect of FGF21 was verified by injection of recombinant mouse fibroblast growth factor 21 (rmFGF21) and knockout of FGF21, and the regulatory effect of TFEB on FGF21 was examined. Mechanistic target of rapamycin (mTOR), ribosomal S6 kinase, TFEB, and FGF21 are involved in the NAFLD process. Overexpression of TFEB in NAFLD mice could reverse lipid deposition and metabolic changes in NAFLD mice. RmFGF21 can reverse the aggravation of NAFLD by TFEB knockdown. Increased expression of TFEB alleviates NAFLD, possibly through upregulation of FGF21 expression by targeting the FGF21 promoter. This study may lay a basis for identifying new drug targets for NAFLD treatment. KEY MESSAGES: Transcription factor EB (TFEB) is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), and fibroblast growth factor 21 (FGF21) exerts a significantly positive effect on NAFLD. In the current study, we found that starvation led to an increase in liver lipids, which was reversed by re-feeding. Phosphorylated mTOR, ribosomal S6 kinase, TFEB, and FGF21 are involved in the above process. The increased expression of TFEB in NAFLD mice by tail vein injection of Ad-TFEB could reverse lipid deposition and metabolic changes in NAFLD mice. TFEB upregulated FGF21 expression by targeting the promoter of FGF21. This study adds to our understanding of the potential role of TFEB on the progression of NAFLD. This study may lay a basis for identifying new drug target of NAFLD treatment.
Collapse
Affiliation(s)
- Qi Gong
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, 315040, Zhejiang, China
| | - Yixuan Sun
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jixiang Shen
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Xiuping Li
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Chao Xue
- Shanghai Anduo Biotechnology Company, Shanghai, 201611, China
| | - Zhihua Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China. .,Department of AnoRectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China. .,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Guangwan Road, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|