1
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Vieytes MR, Botana LM. In vitro assessment of emerging mycotoxins co-occurring in cheese: a potential health hazard. Arch Toxicol 2024; 98:4173-4186. [PMID: 39322822 DOI: 10.1007/s00204-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Some Penicillium strains used in cheese ripening produce emerging mycotoxins, notably roquefortine C (ROQC) and cyclopiazonic acid (CPA), as well as enniatins (ENNs) and beauvericin (BEA). Co-occurrence of these mycotoxins in natural samples has been reported worldwide, however, most studies focus on the toxicity of a single mycotoxin. In the present study, the effects of ROQC and CPA alone and in combination with BEA and ENNs A, A1, B, and B1 were analysed in human neuroblastoma cells. ROQC and CPA reduced cell viability, with IC50 values of 49.5 and 7.3 µM, respectively, and induced caspase-8-mediated apoptosis. When ROQC and CPA were binary combined with ENNs, an enhancement of their individual effects was observed. Furthermore, a clear synergism was produced when ROQC and CPA were mixed with the four ENNs. An additive effect was also described for the combination of CPA + ENNs (A, A1, B, B1) + BEA. Finally, the effects of commercial cheese extracts containing the mentioned mycotoxins were evaluated, finding a strong reduction in cell viability. These results suggest that the co-occurrence of emerging mycotoxins in natural matrices could pose a potential health risk.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
2
|
Martínez-Alonso C, Izzo L, Rodríguez-Carrasco Y, Ruiz MJ. Integrated Approach to Cyclopiazonic Acid Cytotoxicity Using In Vitro (2D and 3D Models) and In Silico Methods. Toxins (Basel) 2024; 16:473. [PMID: 39591228 PMCID: PMC11598133 DOI: 10.3390/toxins16110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by Aspergillus and Penicillium genera present mainly in fruit, cereals and nuts. This study compares the cytotoxicity produced by CPA after 24, 48 and 72 h of exposure using both monolayers and 3D spheroids in human neuroblastoma SH-SY5Y cells. Furthermore, CPA toxicokinetics was evaluated using in silico models. Cytotoxicity increased dose- and time-dependently, as shown by the MTT assay. The lowest CPA IC50 values were found in the monolayer study compared to the 3D spheroids at all exposure times (24 h: 864.01 vs. 1132; 48 h: 437 vs. 1069; 72 h: 392 vs. 567 nM). The CPA exposure on SH-SY5Y spheroid organization and morphology was also studied. Morphological changes, including spheroid disaggregation, were observed after mycotoxin exposure. The in silico methods, SwissADME and admetSAR, were used for short and full ADMEt profiles of CPA. The ADMEt predictive profile shows high gastrointestinal absorption and ability to penetrate the blood-brain barrier. Including in silico studies emphasizes the comprehensive approach to understanding mycotoxin toxicity and risk assessment. By combining in vitro 3D spheroid models with computational simulations, this study aims to provide a holistic perspective on the effects of CPA, enhancing the accuracy and relevance of our findings.
Collapse
Affiliation(s)
- Carmen Martínez-Alonso
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy;
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| | - María-José Ruiz
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| |
Collapse
|
3
|
Ye Y, Sun X, Huang C, Ji J, Sun J, Zhang Y, Wang JS, Zhao H, Sun X. Metabolic transformation of cyclopiazonic acid in liver microsomes from different species based on UPLC-Q/TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134902. [PMID: 38909467 DOI: 10.1016/j.jhazmat.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
To investigate the metabolic transformation of cyclopiazonic acid (CPA) in the liver of different species and to supplement accurate risk assessment information, the metabolism of CPA in liver microsomes from four animals and humans was studied using the ultra-high-performance liquid chromatography-quadrupole/time-of-flight method. The results showed that a total of four metabolites were obtained, and dehydrogenation, hydroxylation, methylation, and glucuronidation were identified as the main metabolic pathways of CPA. Rat liver microsomes exhibited the highest metabolic capacity for CPA, with dehydrogenated (C20H18N2O3) and glucuronic acid-conjugated (C26H28N2O10) metabolites identified in all liver microsomes except chicken, indicating significant species metabolic differences. Moreover, C20H18N2O3 was only detected in the incubation system with cytochromes P450 3A4 (CYP3A4). The hydroxylated (C20H20N2O4) and methylated (C21H22N2O3) metabolites were detected in all incubation systems except for the CYP2C9, with CYP3A4 demonstrating the strongest metabolic capacity. The "cocktail" probe drug method showed that CPA exhibited a moderate inhibitory effect on the CYP3A4 (IC50 value = 8.658 μM), indicating that the substrate had a negative effect on enzyme activity. Our results provide new insights to understand the biotransformation profile of CPA in animals and humans.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xinyu Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Caihong Huang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Hongjing Zhao
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Wang S, Wu X, Yang J, Peng Y, Miao F, Li M, Zeng J. Sterigmatocystin declines mouse oocyte quality by inducing ferroptosis and asymmetric division defects. J Ovarian Res 2024; 17:175. [PMID: 39198920 PMCID: PMC11351269 DOI: 10.1186/s13048-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Yuwan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Fulu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
5
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Liu S, Sun L, Sun M, Lv Z, Hua R, Wang Y, Yang X, Zhu M. Influence of para-substituted benzaldehyde derivatives with different push/pull electron strength groups on the conformation of human serum albumin and toxicological effects in zebrafish. Int J Biol Macromol 2024; 266:131246. [PMID: 38554915 DOI: 10.1016/j.ijbiomac.2024.131246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Excessive intake of benzaldehyde and its derivatives can cause irreversible damage to living organisms. Hence, benzaldehyde derivatives with different para-substitutions of push/pull electronic groups were chosen to investigate the effect of different substituent properties on the structure of human serum albumin (HSA). The binding constants, number of binding sites, major interaction forces, protein structural changes, and binding sites of benzaldehyde (BzH) and its derivatives (4-BzHD) with HSA in serum proteins were obtained based on multispectral and molecular docking techniques. The mechanism of BzH/4-BzHD interaction on HSA is mainly static quenching and is accompanied by the formation of a ground state complex. BzH/4-BzHD is bound to HSA in a 1:1 stoichiometric ratio. The interaction forces for the binding of BzH/4-BzHD to HSA are mainly hydrogen bonding and hydrophobic interaction, which are also accompanied by a small amount of electrostatic interactions. The effect of BzH/4-BzHD on HSA conformation follows: 4-Diethylaminobenzaldehyde (4-DBzH) > 4-Nitrobenzaldehyde (4-NBzH) > 4-Hydroxybenzaldehyde (4-HBzH) > 4-Acetaminobenzaldehyde (4-ABzH) > BzH, which means that the stronger push/pull electronic strength of the para-substituted benzaldehyde derivatives has a greater effect on HSA conformation. Furthermore, the concentration-lethality curves of different concentrations for BzH/4-BzHD on zebrafish verified above conclusion. This work provides a scientific basis for the risk assessment of benzaldehyde and its derivatives to the ecological environment and human health and for the environmental toxicological studies of benzaldehyde derivatives with different strengths of push/pull electron substitution.
Collapse
Affiliation(s)
- Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhanao Lv
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
7
|
Poór M, Dombi Á, Fliszár-Nyúl E, Pedroni L, Dellafiora L. Effects of Chrysin and Chrysin-7-sulfate on Ochratoxin A-Albumin Interactions and on the Plasma and Kidney Levels of the Mycotoxin in Rats. ACS OMEGA 2024; 9:17655-17666. [PMID: 38645364 PMCID: PMC11024961 DOI: 10.1021/acsomega.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
The nephrotoxic mycotoxin ochratoxin A (OTA) is a common food contaminant. OTA binds to the Sudlow's Site I region of serum albumin with very high affinity, resulting in its slow elimination. The displacement of OTA from albumin may be beneficial due to the faster excretion of the mycotoxin, while it may also lead to the increased tissue uptake of OTA. Furthermore, it is challenging to displace the mycotoxin from albumin even with high-affinity Site I ligands. In this study, we tested the impacts of Site I and Heme site ligands on OTA-albumin interactions by applying fluorescence spectroscopic, ultracentrifugation, and modeling studies. Chrysin-7-sulfate (C7S) strongly displaced OTA from both human and rat albumins; therefore, the impacts of C7S (single intravenous administration) and the parent flavonoid chrysin (repeated peroral treatment) were examined on the plasma and kidney levels of OTA in rats. Chrysin barely influenced the concentrations of mycotoxin in plasma and kidneys. In the first few hours, C7S significantly decreased the plasma levels of OTA compared to the control animals; while after 24 h, only minor differences were noticed. Our study highlights the superior displacing ability of C7S vs OTA regarding human and rat albumins.
Collapse
Affiliation(s)
- Miklós Poór
- Department
of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary
- Molecular
Medicine Research Group, János Szentágothai Research
Centre, University of Pécs, Ifjúság útja
20, Pécs H-7624, Hungary
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Ágnes Dombi
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Eszter Fliszár-Nyúl
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Lorenzo Pedroni
- Department
of Food and Drug, University of Parma, Via G.P. Usberti 27/A, Parma 43124, Italy
| | - Luca Dellafiora
- Department
of Food and Drug, University of Parma, Via G.P. Usberti 27/A, Parma 43124, Italy
| |
Collapse
|
8
|
van Eijk N, Schmacke LC, Steinmetzer T, Pilgram O, Poór M, Pászti-Gere E. In vitro testing of host-targeting small molecule antiviral matriptase/TMPRSS2 inhibitors in 2D and 3D cell-based assays. Biomed Pharmacother 2023; 168:115761. [PMID: 37865989 DOI: 10.1016/j.biopha.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic strongly stimulated the development of small molecule antivirals selectively targeting type II transmembrane serine proteases (TTSP), required for the host-cell entry of numerous viruses. A set of 3-amidinophenylalanine derivatives (MI-21, MI-472, MI-477, MI-485, MI-1903 and MI-1904), which inhibit the cleavage of certain viral glycoproteins was characterized in 2D and 3D primary human hepatocyte models on collagen- and Matrigel-coating using a CCK-8 assay to evaluate their cytotoxicity, a resorufin-based method to detect redox imbalances, fluorescence and ultrafiltration experiments to evaluate their interactions with human serum albumin (HSA) and α-acidic glycoprotein (AGP), and luminescence measurement to assess CYP3A4 modulation. For elucidation of selectivity of the applied compounds towards matriptase, transmembrane serine protease 2 (TMPRRS2), thrombin and factor Xa (FXa) Ki values were determined. It was proven that cell viability was only deteriorated by inhibitor MI-1903, and redox status was not influenced by administration of the selected inhibitors at 50 µM for 24 h. MI-472 and MI-477 formed relatively stable complexes with AGP. CYP3A4 inhibition was found to be strong in PHHs exposed to all inhibitors with the exception of MI-21, which seems to be a promising drug candidate also due to its better selectivity towards matriptase and TMPRSS2 over the blood clotting proteases thrombin and FXa. Our in vitro pharmacokinetic screening with these inhibitors helps to select the compounds with the best selectivity and safety profile suitable for a further preclinical characterization without animal sacrifice.
Collapse
Affiliation(s)
- Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary.
| |
Collapse
|
9
|
Lubinska-Szczygeł M, Polkowska Ż, Rutkowska M, Gorinstein S. Chemical, Aroma and Pro-Health Characteristics of Kaffir Lime Juice-The Approach Using Optimized HS-SPME-GC-TOFMS, MP-OES, 3D-FL and Physiochemical Analysis. Int J Mol Sci 2023; 24:12410. [PMID: 37569785 PMCID: PMC10418508 DOI: 10.3390/ijms241512410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The study aimed to provide the chemical, aroma and prohealth characteristics of the kaffir lime juice. A procedure using solid-phase microextraction with gas chromatography (SPME-GC-TOFMS) was optimized and validated for the determination of terpenes of kaffir lime. Main physicochemical parameters: pH, vitamin C, citric acid and °Brix were evaluated. Micro- and macro elements were determined using microwave plasma optic emission spectrometry (MP-OES). The binding of kaffir lime terpenes to human serum albumin (HSA) was investigated by fluorescence spectroscopy (3D-FL). β-Pinene and Limonene were selected as the most abundant terpenes with the concentration of 1225 ± 35 and 545 ± 16 µg/g, respectively. The values of citric acid, vitamin C, °Brix and pH were 74.74 ± 0.50 g/kg, 22.31 ± 0.53 mg/100 mL, 10.35 ± 0.70 and 2.406 ± 0.086 for, respectively. Iron, with a concentration of 16.578 ± 0.029 mg/kg, was the most abundant microelement. Among the macroelements, potassium (8121 ± 52 mg/kg) was dominant. Kaffir lime binding to HSA was higher than β-Pinene, which may indicate the therapeutic effect of the juice. Kaffir lime juice is a source of terpenes with good aromatic and bioactive properties. Fluorescence measurements confirmed its therapeutic effect. Kaffir lime juice is also a good source of citric acid with potential industrial application. The high content of minerals compared to other citruses increases its prohealth value.
Collapse
Affiliation(s)
- Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| |
Collapse
|
10
|
Csenki Z, Bartók T, Bock I, Horváth L, Lemli B, Zsidó BZ, Angeli C, Hetényi C, Szabó I, Urbányi B, Kovács M, Poór M. Interaction of Fumonisin B1, N-Palmitoyl-Fumonisin B1, 5- O-Palmitoyl-Fumonisin B1, and Fumonisin B4 Mycotoxins with Human Serum Albumin and Their Toxic Impacts on Zebrafish Embryos. Biomolecules 2023; 13:biom13050755. [PMID: 37238625 DOI: 10.3390/biom13050755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Fumonisins are frequent food contaminants. The high exposure to fumonisins can cause harmful effects in humans and animals. Fumonisin B1 (FB1) is the most typical member of this group; however, the occurrence of several other derivatives has been reported. Acylated metabolites of FB1 have also been described as possible food contaminants, and the very limited data available suggest their significantly higher toxicity compared to FB1. Furthermore, the physicochemical and toxicokinetic properties (e.g., albumin binding) of acyl-FB1 derivatives may show large differences compared to the parent mycotoxin. Therefore, we tested the interactions of FB1, N-palmitoyl-FB1 (N-pal-FB1), 5-O-palmitoyl-FB1 (5-O-pal-FB1), and fumonisin B4 (FB4) with human serum albumin as well as the toxic effects of these mycotoxins on zebrafish embryos were examined. Based on our results, the most important observations and conclusions are the following: (1) FB1 and FB4 bind to albumin with low affinity, while palmitoyl-FB1 derivatives form highly stable complexes with the protein. (2) N-pal-FB1 and 5-O-pal-FB1 likely occupy more high-affinity binding sites on albumin. (3) Among the mycotoxins tested, N-pal-FB1 showed the most toxic effects on zebrafish, followed by 5-O-pal-FB1, FB4, and FB1. (4) Our study provides the first in vivo toxicity data regarding N-pal-FB1, 5-O-pal-FB1, and FB4.
Collapse
Affiliation(s)
- Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Pharmacoinformatics Unit, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Cserne Angeli
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Pharmacoinformatics Unit, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Agriobiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Guba Sándor út 40, H-7400 Kaposvár, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
11
|
Probing Serum Albumins and Cyclodextrins as Binders of the Mycotoxin Metabolites Alternariol-3-Glucoside, Alternariol-9-Monomethylether-3-Glucoside, and Zearalenone-14-Glucuronide. Metabolites 2023; 13:metabo13030446. [PMID: 36984886 PMCID: PMC10059066 DOI: 10.3390/metabo13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most dominant metabolites of zearalenone. In this study, we examined serum albumins and cyclodextrins (CDs) as potential binders of AG, AMG, and Z14Glr. The most important results/conclusions were as follows: AG and AMG formed moderately strong complexes with human, bovine, porcine, and rat albumins. Rat albumin bound Z14Glr approximately 4.5-fold stronger than human albumin. AG–albumin and Z14Glr–albumin interactions were barely influenced by the environmental pH, while the formation of AMG–albumin complexes was strongly favored by alkaline conditions. Among the mycotoxin–CD complexes examined, AMG–sugammadex interaction proved to be the most stable. CD bead polymers decreased the mycotoxin content of aqueous solutions, with moderate removal of AG and AMG, while weak extraction of Z14Glr was observed. In conclusion, rat albumin is a relatively strong binder of Z14Glr, and albumin can form highly stable complexes with AMG at pH 8.5. Therefore, albumins can be considered as affinity proteins with regard to the latter mycotoxin metabolites.
Collapse
|
12
|
Cyclodextrin-Based Displacement Strategy of Sterigmatocystin from Serum Albumin as a Novel Approach for Acute Poisoning Detoxification. Int J Mol Sci 2023; 24:ijms24054485. [PMID: 36901918 PMCID: PMC10003537 DOI: 10.3390/ijms24054485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
This study demonstrates that sterigmatocystin (STC) interacts non-covalently with various cyclodextrins (CDs), showing the highest binding affinity for sugammadex (a γ-CD derivative) and γ-CD, and an almost order of magnitude lower affinity for β-CD. This difference in affinity was studied using molecular modelling and fluorescence spectroscopy, which demonstrated a better insertion of STC into larger CDs. In parallel, we showed that STC binds to human serum albumin (HSA) (a blood protein known for its role as a transporter of small molecules) with an almost two order of magnitude lower affinity compared to sugammadex and γ-CD. Competitive fluorescence experiments clearly demonstrated an efficient displacement of STC from the STC-HSA complex by cyclodextrins. These results are a proof-of-concept that CDs can be used to complex STC and related mycotoxins. Similarly, as sugammadex extracts neuromuscular relaxants (e.g., rocuronium and vecuronium) from blood and blocks their bioactivity, it could also be used as first aid upon acute intoxication to encapsulate a larger part of the STC mycotoxin from serum albumin.
Collapse
|
13
|
Testing Serum Albumins and Cyclodextrins as Potential Binders of the Mycotoxin Metabolites Alternariol-3-Sulfate, Alternariol-9-Monomethylether and Alternariol-9-Monomethylether-3-Sulfate. Int J Mol Sci 2022; 23:ijms232214353. [PMID: 36430830 PMCID: PMC9698663 DOI: 10.3390/ijms232214353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria mycotoxins, including alternariol (AOH), alternariol-9-monomethylether (AME), and their masked/modified derivatives (e.g., sulfates or glycosides), are common food contaminants. Their acute toxicity is relatively low, while chronic exposure can lead to the development of adverse health effects. Masked/modified metabolites can probably release the more toxic parent mycotoxin due to their enzymatic hydrolysis in the intestines. Previously, we demonstrated the complex formation of AOH with serum albumins and cyclodextrins; these interactions were successfully applied for the extraction of AOH from aqueous matrices (including beverages). Therefore, in this study, the interactions of AME, alternariol-3-sulfate (AS), and alternariol-9-monomethylether-3-sulfate (AMS) were investigated with albumins (human, bovine, porcine, and rat) and with cyclodextrins (sulfobutylether-β-cyclodextrin, sugammadex, and cyclodextrin bead polymers). Our major results/conclusions are the following: (1) The stability of mycotoxin-albumin complexes showed only minor species dependent variations. (2) AS and AMS formed highly stable complexes with albumins in a wide pH range, while AME-albumin interactions preferred alkaline conditions. (3) AME formed more stable complexes with the cyclodextrins examined than AS and AMS. (4) Beta-cyclodextrin bead polymer proved to be highly suitable for the extraction of AME, AS, and AMS from aqueous solution. (5) Albumins and cyclodextrins are promising binders of the mycotoxins tested.
Collapse
|
14
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
15
|
Lemli B, Lomozová Z, Huber T, Lukács A, Poór M. Effects of Heme Site (FA1) Ligands Bilirubin, Biliverdin, Hemin, and Methyl Orange on the Albumin Binding of Site I Marker Warfarin: Complex Allosteric Interactions. Int J Mol Sci 2022; 23:ijms232214007. [PMID: 36430492 PMCID: PMC9694159 DOI: 10.3390/ijms232214007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human serum albumin (HSA) is the most abundant plasma protein in circulation. The three most important drug-binding sites on HSA are Sudlow's Site I (subdomain IIA), Sudlow's Site II (subdomain IIIA), and Heme site (subdomain IB). Heme site and Site I are allosterically coupled; therefore, their ligands may be able to allosterically modulate the binding affinity of each other. In this study, the effects of four Heme site ligands (bilirubin, biliverdin, hemin, and methyl orange) on the interaction of the Site I ligand warfarin with HSA were tested, employing fluorescence spectroscopic, ultrafiltration, and ultracentrifugation studies. Our major results/conclusions are the following. (1) Quenching studies indicated no relevant interaction, while the other fluorescent model used suggested that each Heme site ligand strongly decreases the albumin binding of warfarin. (2) Ultrafiltration and ultracentrifugation studies demonstrated the complex modulation of warfarin-HSA interaction by the different Heme site markers; for example, bilirubin strongly decreased while methyl orange considerably increased the bound fraction of warfarin. (3) Fluorescence spectroscopic studies showed misleading results in these diligand-albumin interactions. (4) Different Heme site ligands can increase or decrease the albumin binding of warfarin and the outcome can even be concentration dependent (e.g., biliverdin and hemin).
Collapse
Affiliation(s)
- Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Zuzana Lomozová
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-501-500 (ext. 28316)
| |
Collapse
|