1
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Taleb SJ, Ye Q, Baoyinna B, Dedad M, Pisini D, Parinandi NL, Cantley LC, Zhao J, Zhao Y. Molecular Regulation of Transforming Growth Factor-β1-induced Thioredoxin-interacting Protein Ubiquitination and Proteasomal Degradation in Lung Fibroblasts: Implication in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10002. [PMID: 38529321 PMCID: PMC10962057 DOI: 10.35534/jrbtm.2024.10002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-β1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-β1 (TGF-β1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-β1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-β1 exposure. TGF-β1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-β1-induced degradation. Furthermore, downregulationof ubiquitin-specific protease-13 (USP13) promoted the TGF-β1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.
Collapse
Affiliation(s)
- Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Boina Baoyinna
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael Dedad
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Dakshin Pisini
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | - Lewis C Cantley
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Shahlaee A, Yang D, Chen J, Lamy R, Stewart JM. Vitreous Biomarkers for Proliferative Vitreoretinopathy Prognostication in Patients Undergoing Primary Retinal Detachment Repair. Transl Vis Sci Technol 2024; 13:3. [PMID: 38180775 PMCID: PMC10774689 DOI: 10.1167/tvst.13.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose To compare baseline levels of exploratory biomarkers in the vitreous fluid of patients with primary retinal detachment who subsequently develop proliferative vitreoretinopathy (PVR) versus those who do not. Methods In this exploratory case-control study, we evaluated the baseline protein biomarker levels from a biobank containing the vitreous fluid of patients who had undergone primary pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment. Undiluted samples were collected at the time of PPV and stored at -80°C. Samples from 13 patients who developed PVR within 6 months (PVR group) and 13 age- and gender-matched controls who did not develop PVR (control group) were included. Protein abundance levels were evaluated using a proximity extension assay, and a confirmatory enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration of vimentin. Results Baseline vimentin (Normalized Protein eXpression [NPX], 8.6 vs. 6.4, P < 0.0001) and heme oxygenase 1 (NPX 8.9 vs. 7.0, P < 0.001) levels were found to be elevated in vitreous fluid of patients who subsequently developed PVR compared to those who did not. Confirmatory analysis using ELISA demonstrated mean vimentin concentrations of 7254 vs. 2727 ng/mL in the PVR versus control groups (P = 0.0152). The odds ratio for developing PVR was 14 (confidence interval, 1.4-168; P = 0.03), assuming a baseline vimentin threshold of 7500 ng/mL. Conclusions Vimentin is an intermediate filament protein expressed by retinal glial cells, and our data combined with prior evidence suggest that it may serve as an early vitreous biomarker for subsequent PVR formation and reactive gliosis. Furthermore, we found, for the first time, elevated baseline levels of heme oxygenase 1, a measurable indicator of oxidative stress. Translational Relevance Our positive findings could impact clinical care for retinal detachment patients by facilitating risk stratification for targeted interventions or closer monitoring in those at the highest risk of developing PVR.
Collapse
Affiliation(s)
- Abtin Shahlaee
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Daphne Yang
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Jamie Chen
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Ricardo Lamy
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Jay M. Stewart
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| |
Collapse
|
4
|
Xuan Y, Peng K, Zhu R, Kang Y, Yin Z. Hmox1 is Identified as a Ferroptosis Hub Gene and Associated with the M1 Type Microglia/Macrophage Polarization in Spinal Cord Injury: Bioinformatics and Experimental Validation. Mol Neurobiol 2023; 60:7151-7165. [PMID: 37532969 DOI: 10.1007/s12035-023-03543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Ferroptosis and immune cell infiltration are important pathological events in spinal cord injury (SCI), but links between ferroptosis and immune microenvironment after SCI were rare reported. In our study, 77 FRDEGs were screened at 7 days after SCI. GO analysis of FRDEGs showed that aging (GO:0007568; P-value = 1.11E-05) was the most remarkable enriched for biological process, protein binding (GO:0005515; adjusted P-value = 4.44E-06) was the most significantly enriched for molecular function, cytosol (GO:0005829; adjusted P-value = 1.51E-04) was the most prominent enriched for cellular component. Meanwhile, Ferroptosis was significantly enriched both in KEGG (rno04216; adjusted P-value = 0.001) and GSEA (NES = 1.35; adjusted P-value = 0.004) analysis. Next, Hmox1 (Log2Fold change = 6.52; adjusted P-value = 0.004) was identified as one of hub genes in SCI-induced ferroptosis. In the results of immune cell infiltration analysis, proportion of microglia/macrophage was significantly increased after SCI, and Hmox1 was found to positively correlate to the M1 type microglia/macrophage abundance. Finally, effects of Hmox1 on ferroptosis and M1 type polarization were validated in vivo and in vitro. Summarily, we found that Hmox1 was the hub gene in SCI-induced ferroptosis and associated with the M1 type polarization.
Collapse
Affiliation(s)
- Yong Xuan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- Department of Orthopedics, The second people's hospital of Hefei, 246 Heping Road, Hefei, 230011, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Peng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Rui Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- Department of Orthopedics, The Affiliated Chaohu Hospital of Anhui Medical University, Anhui Medical University, 64 Chaohu Northern Road, Hefei, 238001, China
| | - Yu Kang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|