1
|
Blandino G, Satchi-Fainaro R, Tinhofer I, Tonon G, Heilshorn SC, Kwon YJ, Pestana A, Frascolla C, Pompili L, Puce A, Iachettini S, Tocci A, Karkampouna S, Kruithof-de Julio M, Tocci P, Porciello N, Maccaroni K, Rutigliano D, Shen X, Ciliberto G. Cancer Organoids as reliable disease models to drive clinical development of novel therapies. J Exp Clin Cancer Res 2024; 43:334. [PMID: 39731178 DOI: 10.1186/s13046-024-03258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
On September 23-24 (2024) the 6th Workshop IRE on Translational Oncology, titled "Cancer Organoids as Reliable Disease Models to Drive Clinical Development of Novel Therapies," took place at the IRCCS Regina Elena Cancer Institute in Rome. This prominent international conference focused on tumor organoids, bringing together leading experts from around the world.A central challenge in precision oncology is modeling the dynamic tumor ecosystem, which encompasses numerous elements that evolve spatially and temporally. Patient-derived 3D culture models, including organoids, explants, and engineered or bioprinted systems, have recently emerged as sophisticated tools capable of capturing the complexity and diversity of cancer cells interacting within their microenvironments. These models address critical unmet needs in precision medicine, particularly in aiding clinical decision-making. The rapid development of these human tissue avatars has enabled advanced modeling of cellular alterations in disease states and the screening of compounds to uncover novel therapeutic pathways.Throughout the event, distinguished speakers shared their expertise and research findings, illustrating how organoids are transforming our understanding of treatment resistance, metastatic dynamics, and the interaction between tumors and the surrounding microenvironment.This conference served as a pivotal opportunity to strengthen international collaborations and spark innovative translational approaches. Its goal was to accelerate the shift from preclinical research to clinical application, paving the way for increasingly personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Giovanni Blandino
- Translational Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Ronit Satchi-Fainaro
- Deapartment of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité University Medicin, Berlin, Germany
| | - Giovanni Tonon
- Center of Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, USA
| | - Yong-Jun Kwon
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - Ana Pestana
- Department of Radiooncology and Radiotherapy, Charité University Medicin, Berlin, Germany
| | - Carlotta Frascolla
- Translational Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Pompili
- Translational Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Aurora Puce
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Iachettini
- Translational Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Annalisa Tocci
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sofia Karkampouna
- Department for BioMedical Research, University of Bern, Swiss, Switzerland
| | | | - Piera Tocci
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicla Porciello
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Klizia Maccaroni
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Rutigliano
- Translational Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Xiling Shen
- GI Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Scott AL, Jazwinska DE, Kulawiec DG, Zervantonakis IK. Paracrine Ovarian Cancer Cell-Derived CSF1 Signaling Regulates Macrophage Migration Dynamics in a 3D Microfluidic Model that Recapitulates In Vivo Infiltration Patterns in Patient-Derived Xenografts. Adv Healthc Mater 2024; 13:e2401719. [PMID: 38807270 PMCID: PMC11560735 DOI: 10.1002/adhm.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 05/30/2024]
Abstract
A high density of macrophages in the ovarian cancer microenvironment is associated with disease progression and poor outcomes. Understanding cancer-macrophage interaction mechanisms that establish this pro-tumorigenic microenvironment is critical for developing macrophage-targeted therapies. Here, 3D microfluidic assays and patient-derived xenografts are utilized to define the role of cancer-derived colony stimulating factor 1 (CSF1) on macrophage infiltration dynamics toward ovarian cancer cells. It is demonstrated that multiple ovarian cancer models promote the infiltration of macrophages into a 3D extracellular matrix in vitro in a cell density-dependent manner. Macrophages exhibit directional migration and increased migration speed under both direct interactions with cancer cells embedded within the matrix and paracrine crosstalk with cancer cells seeded in an independent microchannel. It is also found that platinum-based chemotherapy increases macrophage recruitment and the levels of cancer cell-derived CSF1. Targeting CSF1 signaling under baseline or chemotherapy-treatment conditions reduces the number of infiltrated macrophages. It is further shown that results obtained with the 3D microfluidic model reflect the recruitment profiles of macrophages in patient-derived xenografts in vivo. These findings highlight the role of CSF1 signaling in establishing macrophage-rich ovarian cancer microenvironments, as well as the utility of microfluidic models in recapitulating 3D tumor ecosystems and dissecting cancer-macrophage signaling.
Collapse
Affiliation(s)
- Alexis L Scott
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Dorota E Jazwinska
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Diana G Kulawiec
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Ioannis K Zervantonakis
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
3
|
Plesselova S, Calar K, Axemaker H, Sahly E, Bhagia A, Faragher JL, Fink DM, de la Puente P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol Bioeng 2024; 17:345-367. [PMID: 39513004 PMCID: PMC11538101 DOI: 10.1007/s12195-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00817-y.
Collapse
Affiliation(s)
- Simona Plesselova
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Kristin Calar
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Hailey Axemaker
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Emma Sahly
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- St. Olaf College, Northfield, MN USA
| | - Amrita Bhagia
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Jessica L. Faragher
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Darci M. Fink
- Department of Chemistry, Biochemistry & Physics, South Dakota State University, Brookings, SD USA
| | - Pilar de la Puente
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD USA
| |
Collapse
|
4
|
Lopez-Vince E, Wilhelm C, Simon-Yarza T. Vascularized tumor models for the evaluation of drug delivery systems: a paradigm shift. Drug Deliv Transl Res 2024; 14:2216-2241. [PMID: 38619704 PMCID: PMC11208221 DOI: 10.1007/s13346-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
As the conversion rate of preclinical studies for cancer treatment is low, user-friendly models that mimic the pathological microenvironment and drug intake with high throughput are scarce. Animal models are key, but an alternative to reduce their use would be valuable. Vascularized tumor-on-chip models combine great versatility with scalable throughput and are easy to use. Several strategies to integrate both tumor and vascular compartments have been developed, but few have been used to assess drug delivery. Permeability, intra/extravasation, and free drug circulation are often evaluated, but imperfectly recapitulate the processes at stake. Indeed, tumor targeting and chemoresistance bypass must be investigated to design promising cancer therapeutics. In vitro models that would help the development of drug delivery systems (DDS) are thus needed. They would allow selecting good candidates before animal studies based on rational criteria such as drug accumulation, diffusion in the tumor, and potency, as well as absence of side damage. In this review, we focus on vascularized tumor models. First, we detail their fabrication, and especially the materials, cell types, and coculture used. Then, the different strategies of vascularization are described along with their classical applications in intra/extravasation or free drug assessment. Finally, current trends in DDS for cancer are discussed with an overview of the current efforts in the domain.
Collapse
Affiliation(s)
- Elliot Lopez-Vince
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France.
| |
Collapse
|
5
|
Plesselova S, Calar K, Axemaker H, Sahly E, de la Puente P. Multicompartmentalized microvascularized tumor-on-a-chip to study tumor-stroma interactions and drug resistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596456. [PMID: 38853974 PMCID: PMC11160770 DOI: 10.1101/2024.05.29.596456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.
Collapse
|
6
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Shabir S, Asiaf A. Comparative study on the mutation spectrum of L-MYC and C-MYC genes of blood cfDNA in patients with ovarian cancer and healthy females. J Obstet Gynaecol Res 2023; 49:2894-2904. [PMID: 37827180 DOI: 10.1111/jog.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND This study aimed at detecting the mutations of L-MYC and C-MYC genes in ovarian cancer (OC) patients and healthy female volunteers using cell-free DNA (cfDNA). METHODS We evaluated cfDNA of 50 OC patients with different stages (I-IV) and 50 age-matched healthy female volunteers (controls) in order to access mutations in exon-1 of L-MYC (198 bp) and exon-3 of C-MYC (165 bp) genes using Sanger sequencing. RESULTS The total mutations reported were 43 and 7 in exon-1 of L-MYC and exon-3 of C-MYC genes, respective. The C-MYC and L-MYC gene mutational status recorded in both cases and controls were compared with the already available data on mutations in c-myc and L-myc databases viz SNP db-NCBI, ClinVar db, COSMIC, PubMed, and LitVar which suggested that the detected mutations in exon-1 of L-MYC and exon-3 of C-MYC genes are novel. CONCLUSION Our study showed that cfDNA might be used for noninvasive detection of clinico-genomic profiles of OC patients and as a prognostic biomarker for the disease.
Collapse
Affiliation(s)
- Saba Shabir
- Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, India
| | - Asia Asiaf
- Department of Clinical Biochemistry, Govt. College for Women, M. A. Road, Srinagar, Cluster University Srinagar, Kashmir, India
| |
Collapse
|
8
|
Nayak P, Bentivoglio V, Varani M, Signore A. Three-Dimensional In Vitro Tumor Spheroid Models for Evaluation of Anticancer Therapy: Recent Updates. Cancers (Basel) 2023; 15:4846. [PMID: 37835541 PMCID: PMC10571930 DOI: 10.3390/cancers15194846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Advanced tissue engineering processes and regenerative medicine provide modern strategies for fabricating 3D spheroids. Several different 3D cancer models are being developed to study a variety of cancers. Three-dimensional spheroids can correctly replicate some features of solid tumors (such as the secretion of soluble mediators, drug resistance mechanisms, gene expression patterns and physiological responses) better than 2D cell cultures or animal models. Tumor spheroids are also helpful for precisely reproducing the three-dimensional organization and microenvironmental factors of tumors. Because of these unique properties, the potential of 3D cell aggregates has been emphasized, and they have been utilized in in vitro models for the detection of novel anticancer drugs. This review discusses applications of 3D spheroid models in nuclear medicine for diagnosis and therapy, immunotherapy, and stem cell and photodynamic therapy and also discusses the establishment of the anticancer activity of nanocarriers.
Collapse
Affiliation(s)
- Pallavi Nayak
- Nuclear Medicine Unit, University Hospital Sant’Andrea, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy; (V.B.); (M.V.); (A.S.)
| | | | | | | |
Collapse
|
9
|
Fasoulakis Z, Psarommati MZ, Papapanagiotou A, Pergialiotis V, Koutras A, Douligeris A, Mortaki A, Mihail A, Theodora M, Stavros S, Karakalpakis D, Papamihail M, Kontomanolis EN, Daskalakis G, Antsaklis P. MicroRNAs Can Influence Ovarian Cancer Progression by Dysregulating Integrin Activity. Cancers (Basel) 2023; 15:4449. [PMID: 37760437 PMCID: PMC10526761 DOI: 10.3390/cancers15184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is a deadly disease that affects thousands of women worldwide. Integrins, transmembrane receptors that mediate cell adhesion and signaling, play important roles in ovarian cancer progression, metastasis, and drug resistance. Dysregulated expression of integrins is implicated in various cellular processes, such as cell migration, invasion, and proliferation. Emerging evidence suggests that microRNAs (miRNAs) can regulate integrin expression and function, thus affecting various physiological and pathological processes, including ovarian cancer. In this article, we review the current understanding of integrin-mediated cellular processes in ovarian cancer and the roles of miRNAs in regulating integrins. We also discuss the therapeutic potential of targeting miRNAs that regulate integrins for the treatment of ovarian cancer. Targeting miRNAs that regulate integrins or downstream signaling pathways of integrins may provide novel therapeutic strategies for inhibiting integrin-mediated ovarian cancer progression.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Michaela-Zoi Psarommati
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - Angeliki Papapanagiotou
- Laboratory of Chemistry Biology, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Athanasios Douligeris
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Anastasia Mortaki
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Mihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Sofoklis Stavros
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, 124 62 Athens, Greece;
| | - Defkalion Karakalpakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Maria Papamihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| |
Collapse
|