1
|
Meng Q, Abraham B, Hu J, Jiang Y. Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei. BIORESOURCE TECHNOLOGY 2025; 419:132015. [PMID: 39719201 DOI: 10.1016/j.biortech.2024.132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T. reesei, as well as enzymatic cellulose hydrolysis. However, many unknowns still hinder the rational design of strains for robust cellulase production, with an optimized ratio of cellulolytic enzymes to reduce the required dosage for cellulose hydrolysis. Moreover, large-scale cellulase production relies on submerged fermentation, which suffers from several mass transfer limitations. As the mycelia grow, the fermentation broth rapidly develops non-Newtonian properties, necessitating energy-intensive mixing and aeration to facilitate oxygen transfer essential for strain growth. Herein, this paper critically reviews updated progress in these regards, highlights challenges, and outlines potential solutions.
Collapse
Affiliation(s)
- Qingshan Meng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Yi Jiang
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Pereira LMS, Taveira IC, Maués DB, de Paula RG, Silva RN. Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production. Appl Microbiol Biotechnol 2025; 109:19. [PMID: 39841260 PMCID: PMC11754382 DOI: 10.1007/s00253-025-13408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways. The review also emphasizes the potential of genetic engineering to enhance the specificity and efficiency of these transporters, overcoming challenges such as substrate competition and limited pentose metabolism in industrial strains. By integrating the latest research findings, this work underscores the pivotal role of fungal STs in optimizing lignocellulosic bioethanol production and advancing the bioeconomy. Future prospects for engineering transport systems and their implications for industrial biotechnology are also discussed. KEY POINTS: STs present a conserved structure with different sugar affinities STs are involved in the signaling and transport of sugars derived from plant biomass Genetic engineering of STs can improve 2G bioethanol production.
Collapse
Affiliation(s)
- Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
3
|
Wang H, Shi X, Huo L, Tu J, Li C, Wu FG, Lin F. The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei. J Basic Microbiol 2024:e2400573. [PMID: 39722435 DOI: 10.1002/jobm.202400573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Sugar transporters are of great importance in sensing and transporting varied sugars for cellulase biosynthesis of lignocellulolytic fungi. Nevertheless, the function and the relevant mechanism of sugar transporters in fungal cellulase biosynthesis remain to be explored. Here, putative maltose transporters Mal1, Mal2, Mal3, Mal4, and Mal5 in Trichoderma reesei were investigated. Despite that only the transcriptional abundance of Mal1 was upregulated under cellulase-generating condition, the individual deletion of Mal1, Mal2, Mal3, Mal4, and Mal5 all impaired cellulase biosynthesis. The possible reason for this is that the individual knockout of Mal2, Mal3, Mal4, and Mal5 resulted in no gene expression of Mal1 at 24 h during the cellulase production. The transcriptional analysis showed that the absence of these transporters noticeably inhibited cellulase genes at 24 h, which was then relieved. Interestingly, the individual missing of these maltose transporters significantly retarded the cellular consumption of cellobiose, rather than maltose, and they were distributed in cytoplasm, largely in endoplasmic reticulum (ER). These findings manifested that these putative maltose transporters may be in fact endomembrane cellobiose transporters, influencing fungal cellulase generation probably through Mal1 at the early stage. This research advances the knowledge of endomembrane sugar transporters in fungal cellulase biosynthesis.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Wang Y, Wang J, Wang W. Identification of mycoparasitism-related genes in Trichoderma harzianum T4 that are active against Colletotrichum musae. Arch Microbiol 2023; 206:29. [PMID: 38117327 DOI: 10.1007/s00203-023-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Trichoderma harzianum is a well-known biological control agent (BCA) that shows great potential in controlling many pathogenic fungi. To screen for genes associated with mycoparasitism, we sequenced and analyzed the transcriptome of T. harzianum T4 grown in dual culture with Colletotrichum musae. We analyzed differentially expressed genes (DEGs) of Trichoderma harzianum T4 in three different culture periods: before contact (BC), during contact (C) and after contact (AC). A total of 1453 genes were significantly differentially expressed compared to when T. harzianum T4 was cultured alone. During the three periods of double culture of T. harzianum T4 with C. musae, 74, 516, and 548 genes were up-regulated, respectively, and 11, 315, and 216 genes were down-regulated, respectively. The DEGs were screened using GO and KEGG enrichment analyses combined with differential expression multiples. Six gene categories related to mycoparasitism were screened: (a) pathogen recognition and signal transduction, (b) hydrolases, (c) ribosomal proteins and secreted proteins, (d) multidrug-resistant proteins and transporters, (e) heat shock proteins and detoxification, and (f) oxidative stress and antibiotics-related genes. The expression levels of 24 up-regulated genes during T. harzianum T4's antagonistic interaction with C. musae were detected via real-time fluorescence quantitative PCR (RT-qPCR). This study provided information on the transcriptional expression of T. harzianum T4 against C. musae. These results may help us to further understand the mechanism of mycoparasitism, which can provide a potential molecular target for improving the biological control capacity of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China.
| |
Collapse
|