1
|
Madorran E, Ambrož M, Knez J, Sobočan M. An Overview of the Current State of Cell Viability Assessment Methods Using OECD Classification. Int J Mol Sci 2024; 26:220. [PMID: 39796074 PMCID: PMC11719996 DOI: 10.3390/ijms26010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Over the past century, numerous methods for assessing cell viability have been developed, and there are many different ways to categorize these methods accordingly. We have chosen to use the Organisation for Economic Co-operation and Development (OECD) classification due to its regulatory importance. The OECD categorizes these methods into four groups: non-invasive cell structure damage, invasive cell structure damage, cell growth, and cellular metabolism. Despite the variety of cell viability methods available, they can all be categorized within these four groups, except for two novel methods based on the cell membrane potential, which we added to the list. Each method operates on different principles and has its own advantages and disadvantages, making it essential for researchers to choose the method that best fits their experimental design. This review aims to assist researchers in making this decision by describing these methods regarding their potential use and providing direct references to the cell viability assessment methods. Additionally, we use the OECD classification to facilitate potential regulatory use and to highlight the need for adding a new category to their list.
Collapse
Affiliation(s)
- Eneko Madorran
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
| | - Miha Ambrož
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
| | - Jure Knez
- Department for Gynaecologic Oncology and Oncology of the Breast, University Division for Gynaecology and Perinatology, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Monika Sobočan
- Faculty of Medicine, Institute of Translational and Clinical Research, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.A.); (M.S.)
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Maimaitiyiming A, An H, Xing C, Li X, Li Z, Bai J, Luo C, Zhuo T, Huang X, Maimaiti A, Aikemu A, Wang Y. Machine learning-driven mast cell gene signatures for prognostic and therapeutic prediction in prostate cancer. Heliyon 2024; 10:e35157. [PMID: 39170129 PMCID: PMC11336432 DOI: 10.1016/j.heliyon.2024.e35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background The role of Mast cells has not been thoroughly explored in the context of prostate cancer's (PCA) unpredictable prognosis and mixed immunotherapy outcomes. Our research aims to employs a comprehensive computational methodology to evaluate Mast cell marker gene signatures (MCMGS) derived from a global cohort of 1091 PCA patients. This approach is designed to identify a robust biomarker to assist in prognosis and predicting responses to immunotherapy. Methods This study initially identified mast cell-associated biomarkers from prostate adenocarcinoma (PRAD) patients across six international cohorts. We employed a variety of machine learning techniques, including Random Forest, Support Vector Machine (SVM), Lasso regression, and the Cox Proportional Hazards Model, to develop an effective MCMGS from candidate genes. Subsequently, an immunological assessment of MCMGS was conducted to provide new insights into the evaluation of immunotherapy responses and prognostic assessments. Additionally, we utilized Gene Set Enrichment Analysis (GSEA) and pathway analysis to explore the biological pathways and mechanisms associated with MCMGS. Results MCMGS incorporated 13 marker genes and was successful in segregating patients into distinct high- and low-risk categories. Prognostic efficacy was confirmed by survival analysis incorporating MCMGS scores, alongside clinical parameters such as age, T stage, and Gleason scores. High MCMGS scores were correlated with upregulated pathways in fatty acid metabolism and β-alanine metabolism, while low scores correlated with DNA repair mechanisms, homologous recombination, and cell cycle progression. Patients classified as low-risk displayed increased sensitivity to drugs, indicating the utility of MCMGS in forecasting responses to immune checkpoint inhibitors. Conclusion The combination of MCMGS with a robust machine learning methodology demonstrates considerable promise in guiding personalized risk stratification and informing therapeutic decisions for patients with PCA.
Collapse
Affiliation(s)
- Abudukeyoumu Maimaitiyiming
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Chen Xing
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Xiaodong Li
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| | - Zhao Li
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junbo Bai
- Department of Pediatric Urology, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Luo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tao Zhuo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Huang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aierpati Maimaiti
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Yujie Wang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Department of Urological, Urology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center of Urogenital Diseases, Urumqi, China
| |
Collapse
|
4
|
Kashyap D, Salman H. Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2024; 25:3780. [PMID: 38612592 PMCID: PMC11011362 DOI: 10.3390/ijms25073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.
Collapse
Affiliation(s)
| | - Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
5
|
Jannoo R, Walker W, Kanamarlapudi V. Targeting and Sensitization of Breast Cancer Cells to Killing with a Novel Interleukin-13 Receptor α2-Specific Hybrid Cytolytic Peptide. Cancers (Basel) 2023; 15:2772. [PMID: 37345109 PMCID: PMC10216279 DOI: 10.3390/cancers15102772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in some cancers, we investigated here its expression and the feasibility of therapeutically targeting this receptor in breast cancer using a novel hybrid cytolytic peptide (Pep-1-Phor21) consisting of IL-13Rα2-binding (Pep-1) and cytolytic (Phor21) domains. This study demonstrates that particularly TNBC tissues and cells display the prominent expression of IL-13Rα2. Furthermore, Pep-1-Phor21 induced the rapid necrosis of tumor cells expressing cell-surface IL-13Rα2. Notably, IL-13Rα2 expression was found to be epigenetically regulated in breast cancer cells in that the inhibition of histone deacetylase (HDAC) or DNA methyltransferase (DNMT) upregulated IL-13Rα2 expression, thereby sensitizing them to Pep-1-Phor21. IL-13Rα2-negative non-malignant cells were refractory to these epigenetic effects. Consistent with its cytolytic activity, Pep-1-Phor21 readily destroyed IL-13Rα2-expressing breast cancer spheroids with HDAC or DNMT inhibition, further enhancing cytolytic activity. Therefore, the Pep-1-Phor21-mediated targeting of IL-13Rα2 is a potentially novel therapeutic strategy for TNBC. Given that tumor cells can be selectively sensitized to Pep-1-Phor21 via the epigenetic up-regulation of IL-13Rα2, a combined adjuvant approach involving Pep-1-Phor21 and epigenetic inhibitors may be an effective strategy.
Collapse
Affiliation(s)
- Riaz Jannoo
- UCL ECMC GCLP Facility, UCL Cancer Institute, University College London, London WC1E 6DD, UK;
| | - William Walker
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | | |
Collapse
|