1
|
Gnarra O, van der Meer J, Warncke JD, Fregolente LG, Wenz E, Zub K, Nwachukwu U, Zhang Z, Khatami R, von Manitius S, Miano S, Acker J, Strub M, Riener R, Bassetti CLA, Schmidt MH. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study: feasibility of long-term monitoring with Fitbit smartwatches in central disorders of hypersomnolence and extraction of digital biomarkers in narcolepsy. Sleep 2024; 47:zsae083. [PMID: 38551123 DOI: 10.1093/sleep/zsae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/11/2024] [Indexed: 09/10/2024] Open
Abstract
The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a multicenter research initiative to identify new biomarkers in central disorders of hypersomnolence (CDH). Whereas narcolepsy type 1 (NT1) is well characterized, other CDH disorders lack precise biomarkers. In SPHYNCS, we utilized Fitbit smartwatches to monitor physical activity, heart rate, and sleep parameters over 1 year. We examined the feasibility of long-term ambulatory monitoring using the wearable device. We then explored digital biomarkers differentiating patients with NT1 from healthy controls (HC). A total of 115 participants received a Fitbit smartwatch. Using a adherence metric to evaluate the usability of the wearable device, we found an overall adherence rate of 80% over 1 year. We calculated daily physical activity, heart rate, and sleep parameters from 2 weeks of greatest adherence to compare NT1 (n = 20) and HC (n = 9) participants. Compared to controls, NT1 patients demonstrated findings consistent with increased sleep fragmentation, including significantly greater wake-after-sleep onset (p = .007) and awakening index (p = .025), as well as standard deviation of time in bed (p = .044). Moreover, NT1 patients exhibited a significantly shorter REM latency (p = .019), and sleep latency (p = .001), as well as a lower peak heart rate (p = .008), heart rate standard deviation (p = .039) and high-intensity activity (p = .009) compared to HC. This ongoing study demonstrates the feasibility of long-term monitoring with wearable technology in patients with CDH and potentially identifies a digital biomarker profile for NT1. While further validation is needed in larger datasets, these data suggest that long-term wearable technology may play a future role in diagnosing and managing narcolepsy.
Collapse
Affiliation(s)
- Oriella Gnarra
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland
| | - Julia van der Meer
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan D Warncke
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Livia G Fregolente
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Elena Wenz
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Kseniia Zub
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uchendu Nwachukwu
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Zhongxing Zhang
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
- Clinic Barmelweid, Center for Sleep Medicine and Sleep Research, Barmelweid, Switzerland
| | - Ramin Khatami
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
- Clinic Barmelweid, Center for Sleep Medicine and Sleep Research, Barmelweid, Switzerland
| | - Sigrid von Manitius
- Clinic Barmelweid, Center for Sleep Medicine and Sleep Research, Barmelweid, Switzerland
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Silvia Miano
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Neurocenter of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Sleep Medicine Unit, Ospedale Civico, Lugano, Switzerland
| | - Jens Acker
- Neurocenter of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Sleep Medicine Unit, Ospedale Civico, Lugano, Switzerland
- Clinic for Sleep Medicine, Bad Zurzach, Switzerland
| | - Mathias Strub
- Clinic for Sleep Medicine, Bad Zurzach, Switzerland
- Zentrum für Schlafmedizin Basel, Basel, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland
- Zentrum für Schlafmedizin Basel, Basel, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Claudio L A Bassetti
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Sleep-Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
- Ohio Sleep Medicine Institute, Dublin, USA
| |
Collapse
|
2
|
Adeniyi M, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Solomon J, Fowowe M, Onigbinde S, Flores-Rodriguez JA, Bhuiyan MMAA, Mechref Y. Serum N-Glycan Changes in Rats Chronically Exposed to Glyphosate-Based Herbicides. Biomolecules 2024; 14:1077. [PMID: 39334844 PMCID: PMC11430009 DOI: 10.3390/biom14091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glyphosate, the active ingredient in many herbicides, has been widely used in agriculture since the 1970s. Despite initial beliefs in its safety for humans and animals due to the absence of the shikimate pathway, recent studies have raised concerns about its potential health effects. This study aimed to identify glycomic changes indicative of glyphosate-induced toxicity. Specifically, the study focused on profiling N-glycosylation, a protein post-translational modification increasingly recognized for its involvement in various disorders, including neurological conditions. A comprehensive analysis of rat serum N-glycomics following chronic exposure to glyphosate-based herbicides (GBH) was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed significant changes in the N-glycan profile, particularly in sialylated and sialofucosylated N-glycans. The analysis of N-glycans across gender subgroups provided insights into gender-specific responses to GBH exposure, with the male rats exhibiting a higher susceptibility to these N-glycan changes compared to females. The validation of significantly altered N-glycans using parallel reaction monitoring (PRM) confirmed their expression patterns. This study provides novel insights into the impact of chronic GBH exposure on serum N-glycan composition, with implications for assessing glyphosate toxicity and its potential neurological implications.
Collapse
Affiliation(s)
- Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Bruno A Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jorge A Flores-Rodriguez
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
3
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
Sanni A, Hakim MA, Goli M, Adeniyi M, Talih F, Lanuzza B, Kobeissy F, Plazzi G, Moresco M, Mondello S, Ferri R, Mechref Y. Serum N-Glycan Profiling of Patients with Narcolepsy Type 1 Using LC-MS/MS. ACS OMEGA 2024; 9:32628-32638. [PMID: 39100283 PMCID: PMC11292663 DOI: 10.1021/acsomega.4c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 08/06/2024]
Abstract
The neurological condition known as narcolepsy type 1 (NT1) is an uncommon condition marked by extreme daytime sleepiness, cataplexy, sleep paralysis, hallucinations, disrupted nocturnal sleep, and low or undetectable levels of orexin in the CSF fluid. NT1 has been hypothesized to be an immunological disorder; its treatment is currently only symptomatic, and misdiagnosis is not uncommon. This study compares the N-glycome of NT1 patients with healthy controls in search of potential glycan biomarkers using LC-MS/MS. A total of 121 candidate N-glycans were identified, 55 of which were isomeric N-glycan structures and 65 were not. Seventeen N-glycan biomarker candidates showed significant differences between the NT1 and control cohorts. All of the candidate glycan biomarkers were isomeric except HexNAc6Hex7Fuc0NeuAc1 (6701) and HexNAc6Hex7Fuc1NeuAc2 (6712). Therefore, with isomeric and nonisomeric structures, a total of 20 candidate N-glycan biomarkers are reported in this study, and interestingly, all are either sialylated or sialylated-fucosylated and upregulated in NT1 relative to the control. The distribution levels of all the identified N-glycans show that the sialylated glycan type is the most abundant in NT1 and is majorly disialylated, although the trisialylated subtype is three-fold higher in NT1 compared to the healthy control. The first isomers of HexNAc5Hex6Fuc0NeuAc3 (5603), HexNAc6Hex7Fuc0NeuAc2 (6702), and HexNAc6Hex7Fuc1NeuAc4 (6714) expressed a high level of fold changes (FC) of 1.62, 2.19, and 2.98, respectively. These results suggest a different N-glycome profile of NT1 and a relationship between sialylated glycan isomers in NT1 disease development or progression. The revelation of N-glycan expression alterations in this study may improve NT1 diagnostic methods, understanding of NT1 pathology, and the development of new targeted therapeutics.
Collapse
Affiliation(s)
- Akeem Sanni
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Md Abdul Hakim
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Moyinoluwa Adeniyi
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Farid Talih
- Department
of Psychiatry, Faculty of Medicine, American
University of Beirut, Beirut 1107 2020, Lebanon
| | - Bartolo Lanuzza
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers
(CNMB), Neuroscience Institute, Morehouse
School of Medicine (MSM), Atlanta, Georgia 30310-1458, United States
| | - Giuseppe Plazzi
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Monica Moresco
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
| | - Stefania Mondello
- Department
of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98122, Italy
| | - Raffaele Ferri
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Yehia Mechref
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
5
|
Bjørkum AA, Griebel L, Birkeland E. Human serum proteomics reveals a molecular signature after one night of sleep deprivation. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae042. [PMID: 39131770 PMCID: PMC11310596 DOI: 10.1093/sleepadvances/zpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/31/2024] [Indexed: 08/13/2024]
Abstract
Study Objectives Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstructive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum after 6 hours of sleep deprivation at night. Methods Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spectrometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinformatic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic datasets. Results Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated gene sets. Conclusions This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches Collection.
Collapse
Affiliation(s)
- Alvhild Alette Bjørkum
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Leandra Griebel
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Even Birkeland
- The Proteomics Unit at The Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Daramola O, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Nwaiwu J, Onigbinde S, Adeniyi M, Solomon J, Bhuiyan MMAA, Mechref Y. Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites 2024; 14:50. [PMID: 38248853 PMCID: PMC10819816 DOI: 10.3390/metabo14010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Bruno A. Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Md Mostofa Al Amin Bhuiyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| |
Collapse
|
7
|
Atashi M, Reyes CDG, Sandilya V, Purba W, Ahmadi P, Hakim MA, Kobeissy F, Plazzi G, Moresco M, Lanuzza B, Ferri R, Mechref Y. LC-MS/MS Quantitation of HILIC-Enriched N-glycopeptides Derived from Low-Abundance Serum Glycoproteins in Patients with Narcolepsy Type 1. Biomolecules 2023; 13:1589. [PMID: 38002271 PMCID: PMC10669497 DOI: 10.3390/biom13111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.
Collapse
Affiliation(s)
- Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Firas Kobeissy
- Department of biochemistry and molecular genetics, Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 11072020, Lebanon;
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GE 30310, USA
| | - Giuseppe Plazzi
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Moresco
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| |
Collapse
|
8
|
Zhou Y, Li H, Liu X, Chi X, Gu Z, Cui B, Bergquist J, Wang B, Tian G, Yang C, Xu F, Mi J. The Combination of Quantitative Proteomics and Systems Genetics Analysis Reveals that PTN Is Associated with Sleep-Loss-Induced Cognitive Impairment. J Proteome Res 2023; 22:2936-2949. [PMID: 37611228 DOI: 10.1021/acs.jproteome.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Sleep loss is associated with cognitive dysfunction. However, the detailed mechanisms remain unclear. In this study, we established a para-chlorophenylalanine (PCPA)-induced insomniac mouse model with impaired cognitive function. Mass-spectrometry-based proteomics showed that the expression of 164 proteins was significantly altered in the hippocampus of the PCPA mice. To identify critical regulators among the potential markers, a transcriptome-wide association screening was performed in the BXD mice panel. Among the candidates, the expression of pleiotrophin (Ptn) was significantly associated with cognitive functions, indicating that Ptn-mediates sleep-loss-induced cognitive impairment. Gene co-expression analysis further revealed the potential mechanism by which Ptn mediates insomnia-induced cognitive impairment via the MAPK signaling pathway; that is, the decreased secretion of Ptn induced by insomnia leads to reduced binding to Ptprz1 on the postsynaptic membrane with the activation of the MAPK pathway via Fos and Nr4a1, further leading to the apoptosis of neurons. In addition, Ptn is genetically trans-regulated in the mouse hippocampus and implicated in neurodegenerative diseases in human genome-wide association studies. Our study provides a novel biomarker for insomnia-induced cognitive impairment and a new strategy for seeking neurological biomarkers by the integration of proteomics and systems genetics.
Collapse
Affiliation(s)
- Yutong Zhou
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Hui Li
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaoya Liu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zhaoxi Gu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Binsen Cui
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala 75124, Sweden
| | - Binsheng Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| |
Collapse
|
9
|
Abad VC. Pharmacological options for narcolepsy: are they the way forward? Expert Rev Neurother 2023; 23:819-834. [PMID: 37585269 DOI: 10.1080/14737175.2023.2249234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Narcolepsy is an under-recognized, rare neurologic disorder of hypersomnolence that is associated with increased mortality and medical and psychiatric co-morbidities. Narcolepsy exerts a substantial economic burden on patients and society. There is currently no cure, and life-long symptomatic therapy is needed. Available drugs do not modify the disease course. AREAS COVERED This manuscript provides an overview of narcolepsy symptoms, diagnosis, pathophysiology, current pharmacotherapies, and emerging treatments. Gaps and unresolved issues in diagnosis and management of narcolepsy are discussed to answer whether pharmacological options are the way forward. EXPERT OPINION Diagnostic criteria for narcolepsy (ICSD-3) need revision and greater clarity. Improved recognition of cataplexy and other symptoms through educational outreach, new biomarkers, improved test scoring through artificial intelligence algorithms, and use of machine learning may facilitate earlier diagnosis and treatment. Pharmacological options need improved symptomatic therapy in addition to targeted therapies that address the loss of hypocretin signaling. Optimal narcolepsy care also needs a better understanding of the pathophysiology, recognition of the different phenotypes in narcolepsy, identification of at-risk individuals and early recognition of symptoms, better diagnostic tools, and a database for research and disease monitoring of treatment, side-effects, and comorbidities.
Collapse
Affiliation(s)
- Vivien C Abad
- Division of Sleep Medicine, Department of Psychiatry and Behavioral Sciences Stanford University, Redwood, CA, USA
| |
Collapse
|