1
|
Tromans J, Zhang B, Golding BT. Unlocking nature's antioxidants: a novel method for synthesising plasmalogens. Org Biomol Chem 2024; 22:7989-7995. [PMID: 39233652 DOI: 10.1039/d4ob01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Plasmalogens are glycerophospholipids distinguished by their O-(Z)-vinyl ether at the sn-1 position. These lipids are implicated in several disease states requiring analytical, diagnostic and therapeutic interventions, which demand synthetic availability for a variety of structural types. By deploying the new O-protecting group 1,4-dimethoxynaphthyl-2-methyl ('DIMON') and a new stereospecific method for accessing Z-vinyl ethers, a reproducible, versatile synthetic route to plasmalogens [plasmenyl phosphocholines] has been developed. A key intermediate is (S,Z)-1-((1,4-dimethoxynaphthalen-2-yl)methoxy)-3-(hexadec-1-en-1-yloxy)propan-2-ol, which in principle, permits plasmalogen synthesis 'à la carte' at scale. The methodology compares favourably with all previous synthetic routes by virtue of the very high configurational (>99% Z) and optical purity (>99% ee), including the ability to incorporate polyunsaturated fatty acyl chains (e.g. all Z docosahexaenoic acid) reliably at the sn-2 position.
Collapse
Affiliation(s)
- Jay Tromans
- School of Natural and Environmental Science - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Bian Zhang
- BiBerChem Research Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Bernard T Golding
- School of Natural and Environmental Science - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
2
|
Mouskeftara T, Deda O, Liapikos T, Panteris E, Karagiannidis E, Papazoglou AS, Gika H. Lipidomic-Based Algorithms Can Enhance Prediction of Obstructive Coronary Artery Disease. J Proteome Res 2024; 23:3598-3611. [PMID: 39008891 DOI: 10.1021/acs.jproteome.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipidomics emerges as a promising research field with the potential to help in personalized risk stratification and improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). This study aimed to utilize a machine learning approach to provide a lipid panel able to identify patients with obstructive CAD. In this posthoc analysis of the prospective CorLipid trial, we investigated the lipid profiles of 146 patients with suspected CAD, divided into two categories based on the existence of obstructive CAD. In total, 517 lipid species were identified, from which 288 lipid species were finally quantified, including glycerophospholipids, glycerolipids, and sphingolipids. Univariate and multivariate statistical analyses have shown significant discrimination between the serum lipidomes of patients with obstructive CAD. Finally, the XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, a triacylglycerol, galectin-3, glucose, LDL, and LDH) as totally sensitive (100% sensitivity, 62.1% specificity, 100% negative predictive value) for the prediction of obstructive CAD. Our findings shed light on dysregulated lipid metabolism's role in CAD, validating existing evidence and suggesting promise for novel therapies and improved risk stratification.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodoros Liapikos
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Eleftherios Panteris
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Efstratios Karagiannidis
- Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | | | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Abodi M, Mazzocchi A, Risé P, Marangoni F, Agostoni C, Milani GP. Salivary fatty acids in humans: a comprehensive literature review. Clin Chem Lab Med 2024; 0:cclm-2024-0177. [PMID: 38634552 DOI: 10.1515/cclm-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Fatty acids (FAs) exert diverse biological functions in humans, influencing physiological responses and, ultimately, health and disease risk. The analysis of FAs in human samples has significant implications and attracts interest in diagnostics and research. The standard method for assessing FA profiles involves the collection of blood samples, which can be inconvenient, invasive, and potentially painful, particularly for young individuals outside hospital settings. Saliva emerged as a promising alternative for evaluating FA profiles in both clinical and research settings. However, to the best of our knowledge, an updated synthesis of the related evidence is unavailable. This comprehensive review aims to summarize data on FA analysis and highlight the potential of the use of salivary FAs as a biomarker in health and disease. Over the past decade, there has been a growing interest in studying salivary FAs in chronic diseases, and more recently, researchers have explored the prognostic value of FAs in acute conditions to check the availability of a non-invasive sampling methodology. A deeper understanding of salivary FAs could have relevant implications both for healthy individuals and patients, particularly in elucidating the correlation between the dietary lipidic content and salivary FA level, Finally, it is crucial to address the standardization of the methods as the sampling, processing, and analysis of saliva are heterogeneous among studies, and limited correlation between blood FAs and salivary FAs is available.
Collapse
Affiliation(s)
- Martina Abodi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, 9304 University of Milan , Milan, Italy
| | | | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Chatgilialoglu C. Biomarkers of Oxidative and Radical Stress. Biomolecules 2024; 14:194. [PMID: 38397431 PMCID: PMC10886573 DOI: 10.3390/biom14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are generated as a result of normal intracellular metabolism [...].
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR), 40129 Bologna, Italy;
- Center for Advanced Technologies, Adam Mickiewicz University, 61–614 Poznań, Poland
| |
Collapse
|
5
|
Peña N, Amézaga J, Marrugat G, Landaluce A, Viar T, Arce J, Larruskain J, Lekue J, Ferreri C, Ordovás JM, Tueros I. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players. J Int Soc Sports Nutr 2023; 20:2245386. [PMID: 37605439 PMCID: PMC10446798 DOI: 10.1080/15502783.2023.2245386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND An optimal and correctly balanced metabolic status is essential to improve sports performance in athletes. Recent advances in omic tools, such as the lipid profile of the mature erythrocyte membranes (LPMEM), allow to have a comprehensive vision of the nutritional and metabolic status of these individuals to provide personalized recommendations for nutrients, specifically, the essential omega-3 and omega-6 fatty acids, individuating deficiencies/unbalances that can arise from both habitual diet and sportive activity. This work aimed to study the LPMEM in professional female football players during the football season for the first time and compare it with those defined as optimal values for the general population and a control group. METHODS An observational study was carried out on female football players from the Athletic Club (Bilbao) playing in the first division of the Spanish league. Blood samples were collected at three points: at the beginning, mid-season, and end of the season for three consecutive seasons (2019-2020, 2020-2021, and 2021-2022), providing a total of 160 samples from 40 women. The LPMEM analysis was obtained by GC-FID by published method and correlated to other individual data, such as blood biochemical parameters, body composition, and age. RESULTS We observed a significant increase in docosahexaenoic acid (DHA) (p 0.048) and total polyunsaturated fatty acid (PUFA) (p 0.021) in the first season. In the second season, we observed a buildup in the membrane arachidonic acid (AA) (p < .001) and PUFA (p < .001) contents when high training accumulated. In comparison with the benchmark of average population values, 69% of the football players showed lower levels of omega-6 dihomo-γ-linolenic acid (DGLA), whereas 88%, 44%, and 81% of the participants showed increased values of AA, eicosapentaenoic acid (EPA), and the ratio of saturated and monounsaturated fatty acids (SFA/MUFA), respectively. Regarding relationships between blood biochemical parameters, body composition, and age with LPMEM, we observed some mild negative correlations, such as AA and SFA/MUFA ratio with vitamin D levels (coefficient = -0.34 p = .0019 and coefficient = -.25 p = .042); DGLA with urea and cortisol (coefficient = -0.27 p < .006 and coefficient = .28 p < .0028) and AA with age (coefficient = -0.33 p < .001). CONCLUSION In conclusion, relevant variations in several fatty acids of the membrane fatty acid profile of elite female football players were observed during the competitive season and, in comparison with the general population, increased PUFA contents were confirmed, as reported in other sportive activities, together with the new aspect of DGLA diminution, an omega-6 involved in immune and anti-inflammatory responses. Our results highlight membrane lipidomics as a tool to ascertain the molecular profile of elite female football players with a potential application for future personalized nutritional strategies (diet and supplementation) to address unbalances created during the competitive season.
Collapse
Affiliation(s)
- Nere Peña
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Javier Amézaga
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Gerard Marrugat
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | | | | | - Julen Arce
- Athletic Club, Medical Services, Lezama, Spain
| | | | | | - Carla Ferreri
- Consiglio Nazionale Delle Ricerche, Istituto per la Sintesi Organica E la Fotoreattività, Bologna, Italy
| | - José María Ordovás
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, MA, USA
- Instituto de Salud Carlos III (ISCIII), Consortium CIBERObn, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Tueros
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| |
Collapse
|
6
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
7
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|