1
|
Lyu W, Zhang Y, Ding S, Li X, Sun T, Luo J, Wang J, Li J, Li L. A bilayer hydrogel mimicking the periosteum-bone structure for innervated bone regeneration. J Mater Chem B 2024; 12:11187-11201. [PMID: 39356311 DOI: 10.1039/d4tb01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In bone tissue, nerves are primarily located in the periosteum and play an indispensable role in bone defect repair. However, most bone tissue engineering approaches ignored the reconstruction of the nerve network. Herein, we aimed to develop a bilayer hydrogel simulating periosteum-bone structure to induce innervated bone regeneration. The bottom "bone" layer consisted of gelatin methacryloyl (GelMA), poly(ethylene glycol) diacrylate (PEGDA), and nano-hydroxyapatite (nHA), whereas the upper "periosteum" layer consisted of GelMA, sodium alginate (SA) and MgCl2. The mechanical properties of the upper and bottom hydrogels were designed to be suitable for neurogenesis and osteogenesis, respectively. Besides, Mg2+ from the "periosteum" layer released at the early stage (within 7 d), which aligned with the optimal time window for nerve regeneration and osteogenic related neuropeptide release. Simultaneously, the prevention of long-term Mg2+ release (after 7 d) could avoid osteogenic inhibition caused by prolonged Mg2+ exposure. Additionally, the incorporation of nHA in the bottom "bone" layer supported the long-term osteogenesis due to its osteoconductivity and slow degradation. In vitro biological experiments revealed that the bilayer hydrogel (GS@Mg/GP@nHA) promoted neurite growth and calcitonin gene-related peptide (CGRP) expression in rat dorsal root ganglion (DRG) neurons, as well as the osteogenesis of rat bone-derived mesenchymal stem cells (BMSCs). Moreover, the in vivo experiments demonstrated that the GS@Mg/GP@nHA hydrogel efficiently promoted nerve network reconstruction and bone regeneration of rat calvarial bone defects. Altogether, the bilayer hydrogel GS@Mg/GP@nHA could promote innervated bone regeneration, providing new insights for biomaterial design for bone tissue engineering.
Collapse
Affiliation(s)
- Wenhui Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shaopei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Lei Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Shu Y, Tan Z, Pan Z, Chen Y, Wang J, He J, Wang J, Wang Y. Inhibition of inflammatory osteoclasts accelerates callus remodeling in osteoporotic fractures by enhancing CGRP +TrkA + signaling. Cell Death Differ 2024:10.1038/s41418-024-01368-5. [PMID: 39223264 DOI: 10.1038/s41418-024-01368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Impaired callus remodeling significantly contributes to the delayed healing of osteoporotic fractures; however, the underlying mechanisms remain unclear. Sensory neuronal signaling plays a crucial role in bone repair. In this study, we aimed to investigate the pathological mechanisms hindering bone remodeling in osteoporotic fractures, particularly focusing on the role of sensory neuronal signaling. We demonstrate that in ovariectomized (OVX) mice, the loss of CGRP+TrkA+ sensory neuronal signaling during callus remodeling correlates with increased Cx3cr1+iOCs expression within the bone callus. Conditional knockout of Cx3cr1+iOCs restored CGRP+TrkA+ sensory neuronal, enabling normal callus remodeling progression. Mechanistically, we further demonstrate that Cx3cr1+iOCs secrete Sema3A in the osteoporotic fracture repair microenvironment, inhibiting CGRP+TrkA+ sensory neurons' axonal regeneration and suppressing nerve-bone signaling exchange, thus hindering bone remodeling. Lastly, in human samples, we observed an association between the loss of CGRP+TrkA+ sensory neuronal signaling and increased expression of Cx3cr1+iOCs. In conclusion, enhancing CGRP+TrkA+ sensory nerve signaling by inhibiting Cx3cr1+iOCs activity presents a potential strategy for treating delayed healing in osteoporotic fractures. Inhibition of inflammatory osteoclasts enhances CGRP+TrkA+ signaling and accelerates callus remodeling in osteoporotic fractures.
Collapse
Affiliation(s)
- Yuexia Shu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhen Pan
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jieming He
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jia Wang
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China.
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Binlateh T, Leethanakul C, Thammanichanon P. Involvement of RAMP1/p38MAPK signaling pathway in osteoblast differentiation in response to mechanical stimulation: a preliminary study. J Orthop Surg Res 2024; 19:330. [PMID: 38825686 PMCID: PMC11145863 DOI: 10.1186/s13018-024-04805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.
Collapse
Affiliation(s)
- Thunwa Binlateh
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Peungchaleoy Thammanichanon
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Oral Health Center, Suranaree University of Technology Hospital, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
4
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
5
|
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F, Wang T. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 2024; 130:111766. [PMID: 38452411 DOI: 10.1016/j.intimp.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of calcitonin gene-related peptide (CGRP) on the temporal alteration of macrophage phenotypes and macrophage-regulated angiogenesis duringearlybonehealing and preliminarily elucidate the mechanism. METHODS In vivo, the rat mandibular defect models were established with inferior alveolar nerve transection (IANT) or CGRP receptor antagonist injection. Radiographicandhistologic assessments for osteogenesis, angiogenesis, and macrophage phenotypic alteration within bone defects were performed. In vitro, the effect and mechanism of CGRP on macrophage polarization and phenotypic alteration were analyzed. Then the conditioned medium (CM) from CGRP-treated M1 or M2 macrophages was used to culture human umbilical vein endothelial cells (HUVECs), and the CGRP's effect on macrophage-regulated angiogenesis was detected. RESULTS Comparable changes following IANT and CGRP blockade within bone defects were observed, including the suppression of early osteogenesis and angiogenesis, the prolonged M1 macrophage infiltration and the prohibited transition toward M2 macrophages around vascular endothelium. In vitro experiments showed that CGRP promoted M2 macrophage polarization while upregulating the expression of interleukin 6 (IL-6), a major cytokine that facilitates the transition from M1 to M2-dominant stage, in M1 macrophages via the activation of Yes-associated protein 1. Moreover, CGRP-treated macrophage-CM showed an anabolic effect on HUVECs angiogenesis compared with macrophage-CM and might prevail over the direct effect of CGRP on HUVECs. CONCLUSIONS Collectively, our results reveal the effect of CGRP on M1 to M2 macrophage phenotypic alteration possibly via upregulating IL-6 in M1 macrophages, and demonstrate the macrophage-regulated pro-angiogenic potential of CGRP in early bone healing.
Collapse
Affiliation(s)
- Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Tianlu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
6
|
Nazzal MK, Morris AJ, Parker RS, White FA, Natoli RM, Kacena MA, Fehrenbacher JC. Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing. Curr Osteoporos Rep 2024; 22:182-192. [PMID: 38294715 PMCID: PMC10912323 DOI: 10.1007/s11914-023-00850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing. RECENT FINDINGS Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain. Although many of the impacts of the nervous system on fracture healing are positive, pain mediated by the nervous system can have detrimental effects on mobilization and quality of life. Understanding the role the nervous system plays in fracture healing is vital to understanding fracture healing as a whole and improving quality of life post-injury. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Liu F, Su F, Zhang T, Liu R, Liu N, Dong T. Relationship between knee osteophytes and calcitonin gene-related peptide concentrations of serum and synovial fluid in knee of osteoarthritis. Medicine (Baltimore) 2023; 102:e34691. [PMID: 37657066 PMCID: PMC10476791 DOI: 10.1097/md.0000000000034691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023] Open
Abstract
To explore the relationship between knee osteophytes of osteoarthritic knee and calcitonin gene-related peptide (CGRP) concentrations of serum and synovial fluid (SF). 65 patients with knee medial compartment osteoarthritis (OA) were recruited and examined with weight-bearing radiographs of the entire lower limb. The concentrations of CGRP in serum/SF were also detected in surgery. The relationship between the concentrations of CGRP in serum/SF and osteophyte scores were detected with Spearman rank correlation coefficient. CGRP concentrations in serum and SF were significantly correlated with osteophyte score of overall knee respectively (R = 0.462, P < .001; R = 0.435, P < .001). In addition, a correlation tended to be observed about the relationship between CGRP concentrations in serum and SF and osteophyte scores of medial compartment (R = 0.426, P < .001; R = 0.363, P = .003), and osteophyte scores of lateral compartment (R = 0.429, P < .001; R = 0.444, P < .001). In this study, the relationship between CGRP in serum/SF and knee osteophyte scores in different subregions were explored, which showed significant positive correlations, that possibly reflecting the contribution of CGRP influencing osteophyte formation. Positive correlations between osteophyte scores and CGRP suggest that CGRP promote the growth of osteophyte formation. It has the potential to be selected as a biomarker for the assessment of severity in knee OA patients and predict the progression of knee OA. It also provides a potential therapeutic target to delay the progression and relieve the symptom of OA.
Collapse
Affiliation(s)
- Fan Liu
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Fan Su
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Tao Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Rui Liu
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Na Liu
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Tianhua Dong
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|