1
|
Zhang HJ, Zhu L, Xie QH, Zhang LZ, Liu JY, Feng YYF, Chen ZK, Xia HF, Fu QY, Yu ZL, Chen G. Extracellular vesicle-packaged PD-L1 impedes macrophage-mediated antibacterial immunity in preexisting malignancy. Cell Rep 2024; 43:114903. [PMID: 39489940 DOI: 10.1016/j.celrep.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malignancies can compromise systemic innate immunity, but the underlying mechanisms are largely unknown. Here, we find that tumor-derived small extracellular vesicles (sEVs; TEVs) deliver PD-L1 to host macrophages, thereby impeding antibacterial immunity. Mice implanted with Rab27a-knockdown tumors are more resistant to bacterial infection than wild-type controls. Injection of TEVs into mice impairs macrophage-mediated bacterial clearance, increases systemic bacterial dissemination, and enhances sepsis score in a PD-L1-dependent manner. Mechanistically, TEV-packaged PD-L1 inhibits Bruton's tyrosine kinase/PLCγ2 signaling-mediated cytoskeleton reorganization and reactive oxygen species generation, impacting bacterial phagocytosis and killing by macrophages. Neutralizing PD-L1 markedly normalizes macrophage-mediated bacterial clearance in tumor-bearing mice. Importantly, circulating sEV PD-L1 levels in patients with tumors can predict bacterial infection susceptibility, while patients with tumors treated with αPD-1 exhibit fewer postoperative infections. These findings identify a mechanism by which cancer cells dampen host innate immunity-mediated bacterial clearance and suggest targeting TEV-packaged PD-L1 to reduce bacterial infection susceptibility in tumor-bearing conditions.
Collapse
Affiliation(s)
- He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Yuan Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
LoRicco JG, Bagdan K, Sgambettera G, Malone S, Tomasi T, Lu I, Domozych DS. Chemically induced phenotype plasticity in the unicellular zygnematophyte, Penium margaritaceum. PROTOPLASMA 2024; 261:1233-1249. [PMID: 38967680 PMCID: PMC11511715 DOI: 10.1007/s00709-024-01962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga. Penium margaritaceum is a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone.
Collapse
Affiliation(s)
- Josephine G LoRicco
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA.
| | - Kaylee Bagdan
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Gabriel Sgambettera
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Stuart Malone
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Tawn Tomasi
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Iris Lu
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| |
Collapse
|
3
|
Kagho M, Schmidt K, Lambert C, Kaufmann T, Jia L, Faix J, Rottner K, Stadler M, Stradal T, Klahn P. Comprehensive Cell Biological Investigation of Cytochalasin B Derivatives with Distinct Activities on the Actin Network. JOURNAL OF NATURAL PRODUCTS 2024; 87:2421-2431. [PMID: 39392628 PMCID: PMC11519904 DOI: 10.1021/acs.jnatprod.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
In search of a more comprehensive structure-activity relationship (SAR) regarding the inhibitory effect of cytochalasin B (2) on actin polymerization, a virtual docking of 2 onto monomeric actin was conducted. This led to the identification of potentially important functional groups of 2 (i.e., the NH group of the isoindolone core (N-2) and the hydroxy groups at C-7 and C-20) involved in interactions with the residual amino acids of the binding pocket of actin. Chemical modifications of 2 at positions C-7, N-2, and C-20 led to derivatives 3-6, which were analyzed for their bioactivities. Compounds 3-5 exhibited reduced or no cytotoxicity in murine L929 fibroblasts compared to that of 2. Moreover, short- and long-term treatments of human osteosarcoma cells (U-2OS) with 3-6 affected the actin network to a variable extent, partially accompanied by the induction of multinucleation. Derivatives displaying acetylation at C-20 and N-2 were subjected to slow intracellular conversion to highly cytotoxic 2. Together, this study highlights the importance of the hydroxy group at C-7 and the NH function at N-2 for the potency of 2 on the inhibition of actin polymerization.
Collapse
Affiliation(s)
- Mervic
D. Kagho
- Department
of Chemistry and Molecular Biology, Division of Organic and Medicinal
Chemistry, University of Gothenburg, Medicinaregatan 7B, SE-413 90 Göteborg, Sweden
| | - Katharina Schmidt
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Christopher Lambert
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Division
of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Thomas Kaufmann
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg Strasse 1, D-30625 Hannover, Germany
| | - Lili Jia
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Jan Faix
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg Strasse 1, D-30625 Hannover, Germany
| | - Klemens Rottner
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Division
of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, D-38106 Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology and Department of
Microbial Drugs, Helmholtz Centre for Infection
Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Philipp Klahn
- Department
of Chemistry and Molecular Biology, Division of Organic and Medicinal
Chemistry, University of Gothenburg, Medicinaregatan 7B, SE-413 90 Göteborg, Sweden
| |
Collapse
|
4
|
Talukdar D, Haldar AK, Kumar S, Dastidar R, Basu A, Roy A, Sarkar S, Dey S, Sikder K. Leukocyte infiltration and cross-talk with cardiomyocytes exploit intracellular stress pathways in dilated cardiomyopathy of idiopathic origin. Mol Biol Rep 2024; 51:1090. [PMID: 39446238 DOI: 10.1007/s11033-024-10028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Dilated cardiomyopathy (DCM) is a prevalent form of heart failure results in dilation and disruption of heart. Most strikingly a majority of the DCM cases do not have any identified etiology, hence known as idiopathic DCM (IDCM). Our study aimed to investigate the cross-talk between leukocytes and cardiomyocytes in terms of cardiac inflammation and stress response in IDCM. METHODS 60 IDCM patients and 60 age and sex matched healthy volunteers were recruited in this study based on the New York Heart Association (NYHA) guidelines. Their echocardiographic and biochemical markers were assessed and PBMCs were analyzed for leukocyte migration and inflammation. Also C2C12 myocyte cells were cultured with LPS-activated RAW264.7 monocytes to investigate the cross-talk between them. RESULTS Left ventricular (LV) dysfunction was evident in the IDCM patients which were correlated with their physical discomfort level according to NYHA classification. Their serum levels of IL-1β and TNF-α (≈ 20 pg/ml) were found to be very high along with hs-CRP and IL-2. Elevated levels of ROCK, SMA and ICAM-1 proteins indicated activation and migration of the leukocytes. During monocyte-myocyte co-culture, robust diapedesis was observed in the cultured macrophage cells towards myocytes through the transwell pores (8 µM) in presence of IL-1β and TNF-α causing ER stress and cell death in the myocytes. Inhibition of this migration or by alleviating ER stress inhibits leukocyte recruitment and ensures protection to the myocytes. CONCLUSION The present study showed that alleviating cellular stress and managing leukocyte migration promotes protection to the heart.
Collapse
Affiliation(s)
- Debdatta Talukdar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India
| | - Akash Kumar Haldar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India
| | - Soumitra Kumar
- Department of Cardiology, Ramakrishna Mission Seva Pratishthan Vivekananda Institute of Medical Sciences (RKMSP VIMS), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India
| | - Rinini Dastidar
- Department of Clinical Biochemistry and Immunology, Nirnayan Health Care Private Limited, 145, Rajarhat Main Rd, Zarda Bagan, Jyangra, Rajarhat, Kolkata, West Bengal, 700059, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India
| | - Ajitesh Roy
- Department of Endocrinology and Metabolism, Ramakrishna Mission Seva Pratishthan Vivekananda Institute of Medical Sciences (RKMSP VIMS), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India
| | - Sankalita Sarkar
- Department of Physiology, Department of Sports Sciences, UGC -Centre for Research in Nano sciences and Nanotechnology (CRNN) UGC - Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Sanjit Dey
- Department of Physiology, Department of Sports Sciences, UGC -Centre for Research in Nano sciences and Nanotechnology (CRNN) UGC - Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Kunal Sikder
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), 99 Sarat Bose Road, Kolkata, West Bengal, 700026, India.
- Department of Sports Science and Yoga, School of Indian Heritage, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah, West Bengal, 711202, India.
| |
Collapse
|
5
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2024. [PMID: 39319680 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Serhii Kropyvko
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Lambert C, Karger M, Steffen A, Tang Y, Döring H, Stradal TEB, Lappalainen P, Faix J, Bieling P, Rottner K. Differential interference with actin-binding protein function by acute Cytochalasin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.611976. [PMID: 39372773 PMCID: PMC11451763 DOI: 10.1101/2024.09.11.611976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking or tissue development. Cytochalasin B and -D are fungal secondary metabolites frequently used for interference with such processes. Although generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, our molecular understanding of their precise effects in dynamic actin structures is scarce. Here we combine live cell imaging and analysis of fluorescent actin-binding protein dynamics with acute treatment of lamellipodia in migrating cells with cytochalasin B. Our results show that in spite of an abrupt halt of lamellipodium protrusion, cytochalasin B affects various actin filament barbed end-binding proteins in a differential fashion. Cytochalasin B enhances instead of diminishes the accumulation of prominent barbed end-binding factors such as Ena/VASP family proteins and heterodimeric capping protein (CP) in the lamellipodium. Similar results were obtained with cytochalasin D. All these effects are highly specific, as cytochalasin-induced VASP accumulation requires the presence of CP, but not vice versa , and coincides with abrogation of both actin and VASP turnover. Cytochalasin B can also increase apparent barbed end interactions with the actin-binding β-tentacle of CP and partially mimic its Arp2/3 complex-promoting activity in the lamellipodium. In conclusion, our results reveal a new spectrum of cytochalasin activities on barbed end-binding factors, with important implications for the interpretation of their effects on dynamic actin structures.
Collapse
|
7
|
Javorská Ž, Rimpelová S, Labíková M, Perlíková P. Synthesis of cytochalasan analogues with aryl substituents at position 10. Org Biomol Chem 2024; 22:4536-4549. [PMID: 38758050 DOI: 10.1039/d4ob00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cytochalasans are fungal metabolites that are known to inhibit actin polymerization. Despite their remarkable bioactivity, there are few studies on the structure-activity relationship (SAR) of the cytochalasan scaffold. The full potential of structural modifications remains largely unexplored. The substituent at position 10 of the cytochalasan scaffold is derived from an amino acid incorporated into the cytochalasan core, thus limiting the structural variability at this position in natural products. Additionally, modifications at this position have only been achieved through semisynthetic or mutasynthetic approaches using modified amino acids. This paper introduces a modular approach for late-stage modifications at position 10 of the cytochalasan scaffold. Iron-mediated cross-coupling reactions with corresponding Grignard reagents were used to introduce aryl or benzyl groups in position 10, resulting in the synthesis of six new cytochalasan analogues bearing non-natural aromatic residues. This methodology enables further exploration of modifications at this position and SAR studies among cytochalasan analogues.
Collapse
Affiliation(s)
- Žaneta Javorská
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Magdaléna Labíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavla Perlíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|
8
|
Gu G, Hou X, Xue M, Jia X, Pan X, Xu D, Dai J, Lai D, Zhou L. Rosellichalasins A-H, cytotoxic cytochalasans from the endophytic fungus Rosellinia sp. Glinf021. PHYTOCHEMISTRY 2024; 222:114103. [PMID: 38636686 DOI: 10.1016/j.phytochem.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Eight new cytochalasans rosellichalasins A-H (1-8), as well as two new shunt metabolites rosellinins A (9) and B (10) before intramolecular Diels-Alder cycloaddition reaction in cytochalasan biosynthesis, along with nine known cytochalsans (11-19) were isolated from the endophytic fungus Rosellinia sp. Glinf021, which was derived from the medicinal plant Glycyrrhiza inflata. Their structures were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra and quantum chemical ECD calculations. The cytotoxic activities of these compounds were evaluated against four human cancer cell lines including HCT116, MDA-MB-231, BGC823, and PANC-1 with IC50 values ranging from 0.5 to 58.2 μM.
Collapse
Affiliation(s)
- Gan Gu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuwen Hou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mengyao Xue
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Jia
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaoqian Pan
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100050, China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Formánek B, Dupommier D, Volfová T, Rimpelová S, Škarková A, Herciková J, Rösel D, Brábek J, Perlíková P. Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety. RSC Med Chem 2024; 15:322-343. [PMID: 38283219 PMCID: PMC10809383 DOI: 10.1039/d3md00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024] Open
Abstract
Cytochalasans are known as inhibitors of actin polymerization and for their cytotoxic and migrastatic activity. In this study, we synthesized a series of cytochalasin derivatives that lack a macrocyclic moiety, a structural element traditionally considered essential for their biological activity. We focused on substituting the macrocycle with simple aryl-containing sidechains, and we have also synthesized compounds with different substitution patterns on the cytochalasin core. The cytochalasin analogues were screened for their migrastatic and cytotoxic activity. Compound 24 which shares the substitution pattern with natural cytochalasins B and D exhibited not only significant in vitro migrastatic activity towards BLM cells but also demonstrated inhibition of actin polymerization, with no cytotoxic effect observed at 50 μM concentration. Our results demonstrate that even compounds lacking the macrocyclic moiety can exhibit biological activities, albeit less pronounced than those of natural cytochalasins. However, our findings emphasize the pivotal role of substituting the core structure in switching between migrastatic activity and cytotoxicity. These findings hold significant promise for further development of easily accessible cytochalasan analogues as novel migrastatic agents.
Collapse
Affiliation(s)
- Bedřich Formánek
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Dorian Dupommier
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Tereza Volfová
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5 166 28 Prague The Czech Republic
| | - Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Jana Herciková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Pavla Perlíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague Czech Republic
| |
Collapse
|