1
|
Zhang X, Wang SJ, Wan SC, Li X, Chen G. Ozone: complicated effects in central nervous system diseases. Med Gas Res 2025; 15:44-57. [PMID: 39436168 PMCID: PMC11515058 DOI: 10.4103/mgr.medgasres-d-24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/20/2024] [Accepted: 08/25/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress is closely related to various diseases. Ozone can produce redox reactions through its unique response. As a source of the oxidative stress response, the strong oxidizing nature of ozone can cause severe damage to the body. On the other hand, low ozone concentrations can activate various mechanisms to combat oxidative stress and achieve therapeutic effects. Some animal experiments and clinical studies have revealed the potential medical value of ozone, indicating that ozone is not just a toxic gas. By reviewing the mechanism of ozone and its therapeutic value in treating central nervous system diseases (especially ischemic stroke and Alzheimer's disease) and the toxic effects of ozone, we find that ozone inhalation and a lack of antioxidants or excessive exposure lead to harmful impacts. However, with adequate antioxidants, ozone can transmit oxidative stress signals, reduce inflammation, reduce amyloid β peptide levels, and improve tissue oxygenation. Similar mechanisms to those of possible new drugs for treating ischemic stroke and Alzheimer's disease indicate the potential of ozone. Nevertheless, limited research has restricted the application of ozone. More studies are needed to reveal the exact dose-effect relationship and healing effect of ozone.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Jun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Si-Cen Wan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Chelucci E, Scarfò G, Piccarducci R, Rizza A, Fusi J, Epifani F, Carpi S, Polini B, Betti L, Costa B, Taliani S, Cela V, Artini P, Daniele S, Martini C, Franzoni F. Sex Differences in Blood Accumulation of Neurodegenerative-Related Proteins and Antioxidant Responses to Regular Physical Exercise. J Mol Neurosci 2024; 74:105. [PMID: 39496982 PMCID: PMC11535074 DOI: 10.1007/s12031-024-02278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Physical activity has been demonstrated to improve cognitive function, thereby preventing/slowing neurodegenerative diseases (NDs). Biological responses to physical activity and vulnerabilities to NDs are emerging to be gender-related. Herein, known ND-associated markers (β-amyloid, tau, α-synuclein), main sex steroid hormones, antioxidant responses, and key gene transcription modulators were evaluated in the blood of physically active and sedentary women and men. In our hands, females presented higher basal erythrocytes β-amyloid and α-synuclein amounts than males. Regular physical activity was able to significantly reduce the erythrocyte content of β-amyloid in females and the tau levels in males, suggesting that these differences may be mediated by organizational actions of sex steroid hormones during development. Furthermore, despite a comparable plasma antioxidant capability (AOC) between males and females, in the latter group, physical activity significantly enhances AOC versus peroxynitrite radicals only. Finally, regular physical activity modulated the levels of transcription factor Nrf2 in erythrocytes, as well as the plasma concentration of the microRNA miR-195 and miR-153, suggesting the promotion of antioxidant/autophagic processes associated with ND-related proteins. Overall, these results could shed light on how cerebral adaptations to physical activity differ between males and females, especially with regard to blood accumulation of ND proteins and mechanisms of antioxidant responses to regular exercise.
Collapse
Affiliation(s)
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Antonio Rizza
- Interventional Cardiology Division, Gaetano Pasquinucci Heart Hospital, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Jonathan Fusi
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Epifani
- Department of Juridical and Economic Sciences, Pegaso Telematic University, Fanfani Diagnostics and Health, Florence, Italy
| | - Sara Carpi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Vito Cela
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Artini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | | | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Moon CE, Lee JK, Kim H, Kwon JM, Kang Y, Han J, Ji YW, Seo Y. Proteomic analysis of CD29+ Müller cells reveals metabolic reprogramming in rabbit myopia model. Sci Rep 2024; 14:24072. [PMID: 39402218 PMCID: PMC11473955 DOI: 10.1038/s41598-024-75637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of myopia is rapidly increasing, significantly impacting the quality of life of affected individuals. Prior research by our group revealed reactive gliosis in Müller cells within myopic retina, prompting further investigation of their role in myopia, which remains unclear. In this study, we analyzed protein expression changes in CD29+ Müller cells isolated from a form deprivation-induced rabbit model of myopia using magnetic activated cell sorting to investigate the role of these cells in myopia. As the principal glial cells in the retina, Müller cells exhibited significant alterations in the components of metabolic pathways, particularly glycolysis and angiogenesis, including the upregulation of glycolytic enzymes, such as lactate dehydrogenase A and pyruvate kinase, implicated in the adaptation to increased metabolic demands under myopic stress. Additionally, a decrease in the expression of proteins associated with oxygen transport suggested enhanced vulnerability to oxidative stress. These findings highlight the proactive role of CD29+ Müller cells in modifying the retinal environment in response to myopic stress and provide valuable insights into mechanisms that could help mitigate myopia progression.
Collapse
Affiliation(s)
- Chae-Eun Moon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Jun-Ki Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Hyunjin Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Ji-Min Kwon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinu Han
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eounju-ro, Gangnam-gu, Seoul, 03722, Republic of Korea
| | - Yong Woo Ji
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| | - Yuri Seo
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Remigante A, Spinelli S, Gambardella L, Bozzuto G, Vona R, Caruso D, Villari V, Cappello T, Maisano M, Dossena S, Marino A, Morabito R, Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic Biol Med 2024; 223:1-17. [PMID: 39038767 DOI: 10.1016/j.freeradbiomed.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 μg/mL PS-NPs or PS-MPs for 3 and 24 h, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1 %) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERβ), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, 98166, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Messina, 98158, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| |
Collapse
|
6
|
Dai G, Sun H, Lan Y, Jiang J, Fang B. The association of manganese levels with red cell distribution width: A population-based study. PLoS One 2024; 19:e0292569. [PMID: 39146304 PMCID: PMC11326586 DOI: 10.1371/journal.pone.0292569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/08/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVES Experimental and acute exposure studies imply that manganese affects red blood cell production. Nevertheless, the association between environmental exposure and red blood cell distribution width (RDW) has yet to be explored. This research sought to assess the correlation between blood manganese levels and RDW within the general population of the United States. MATERIALS AND METHODS Employing weighted multiple linear regression models, data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) were utilized to assess the correlation between manganese levels in the blood and RDW. Restricted cubic spline plots and two-piecewise linear regression models were also employed. RESULT The analysis included a total of 15882 participants in which we determined an independent positive relationship between blood manganese levels and RDW among participants(β = 0.079, P<0.001). Moreover, we identified a J-shaped association between blood manganese levels and RDW in total participants (inflection point for blood manganese: 7.32 ug/L) and distinct subgroups following adjusted covariates. Women exhibited a more pronounced association, even after controlling for adjusted covariates. CONCLUSIONS We determined a J-shaped relationship between blood manganese levels and RDW with an inflection point at 7.32 ug/L for blood manganese. Nevertheless, fundamental research and large sample prospective studies are needed to determine the extent to which blood manganese levels correlate with RDW.
Collapse
Affiliation(s)
- Guanmian Dai
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Huanhuan Sun
- Department of Traditional Chinese Medicine, FuYang Women and Children's Hospital, Fuyang, Anhui, China
| | - Yanli Lan
- Department of Oncology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Bingmu Fang
- Department of Hematology, Lishui People's Hospital, Lishui, Zhejiang, China
| |
Collapse
|
7
|
Szlachta B, Birková A, Čižmárová B, Głogowska-Gruszka A, Zalejska-Fiolka P, Dydoń M, Zalejska-Fiolka J. Erythrocyte Oxidative Status in People with Obesity: Relation to Tissue Losses, Glucose Levels, and Weight Reduction. Antioxidants (Basel) 2024; 13:960. [PMID: 39199206 PMCID: PMC11351941 DOI: 10.3390/antiox13080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND This study aimed to investigate the impact of reductions in various body mass components on the erythrocyte oxidative status and glycemic state of people with obesity (PWO). METHODS A total of 53 PWO followed a six-month individualized low-calorie diet with exercise, during which anthropometric, biochemical, and oxidative parameters were measured. The participants were divided into groups based on weight (W), visceral fat area (VFA), total body water (TBW), and skeletal muscle mass (SMM) losses, as well as normoglycemia (NG) and hyperglycemia (HG). RESULTS Weight reduction normalized glycemia and influenced erythrocyte enzyme activity. Regardless of the tissue type lost (VFA, TBW, or SMM), glutathione peroxidase activity decreased in all groups, accompanied by an increase in glutathione reductase activity. Lipofuscin (LPS) and malondialdehyde (MDA) concentrations decreased regardless of the type of tissue lost. The α-/γ-tocopherol ratio increased in those losing >10% body weight, >15% VFA, and >5% TBW. In the NG group, compared to the HG group, there was a decrease in glutathione peroxidase and an increase in glutathione reductase, with these changes being stronger in the HG group. The LPS and MDA concentrations decreased in both groups. Significant correlations were observed between glucose reduction and changes in catalase, retinol, and α-tocopherol, as well as between VFA reduction and changes in vitamin E, L-LPS, and the activities of L-GR and L-GST. CONCLUSIONS This analysis highlights the complex interactions between glucose metabolism, oxidative state, and erythrocyte membrane integrity, crucial for understanding diabetes and its management. This study shows the significant metabolic adaptability of erythrocytes in response to systemic changes induced by obesity and hyperglycemia, suggesting potential therapeutic targets to improve metabolic health in obese individuals.
Collapse
Affiliation(s)
- Beata Szlachta
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Anna Głogowska-Gruszka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Paulina Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Maria Dydoń
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| |
Collapse
|
8
|
Remigante A, Spinelli S, Gambardella L, Straface E, Cafeo G, Russo M, Caruso D, Dugo P, Dossena S, Marino A, Morabito R. Anion exchanger1 (AE1/SLC4A1) function is impaired in red blood cells from prediabetic subjects: Potential benefits of finger lime (Citrus australasica, Faustrime cultivar) juice extract. Cell Biochem Funct 2024; 42:e4105. [PMID: 39096031 DOI: 10.1002/cbf.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Prediabetes is a risk state that defines a high chance of developing diabetes and cardiovascular disease. Oxidative stress mediated by hyperglycemia-induced production of reactive species could play a crucial role in this context. In the present study, we investigated whether the anion exchange capability mediated by AE1 (SLC4A1), which is sensitive to oxidative stress, was altered in human red blood cells (RBCs) obtained from prediabetic volunteers. In addition, we assessed the precise composition of bioactive compounds and the potential benefits of finger lime juice extract (Citrus australasica, Faustrime cultivar) in counteracting oxidative stress-related functional alterations. Human RBCs from normal and prediabetic volunteers were incubated with 50 µg/mL juice extract for 2 h at 25°C. Juice extract restored alterations of the anion exchange capability mediated by AE1 and prevented the structural rearrangements of AE1 and α/β-spectrin in prediabetic RBCs. AE1 functional and structural alterations were not associated with an increase in lipid peroxidation or protein oxidation at the level of the plasma membrane. An increased production of intracellular ROS, which provoked the oxidation of hemoglobin to methemoglobin, both reverted by juice extract, was instead observed. Importantly, juice extract also induced a reduction in glycated hemoglobin levels in prediabetic RBCs. Finally, juice extract blunted the overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase and prevented glutathione depletion in prediabetic RBCs. These findings contribute to clarifying cellular and molecular mechanisms related to oxidative stress and glycation events that may influence RBC and systemic homeostasis in prediabetes, identify AE1 as a sensitive biomarker of RBC structural and function alterations in prediabetes and propose finger lime juice extract as a natural antioxidant for the treatment and/or prevention of the complications associated with the prediabetic condition.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Sharallah OA, Poddar NK, Alwadan OA. Delineation of the role of G6PD in Alzheimer's disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Res Rev 2024; 99:102394. [PMID: 38950868 DOI: 10.1016/j.arr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aβ deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.
Collapse
Affiliation(s)
- Omnya A Sharallah
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Omnia A Alwadan
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
10
|
Ghani MU, Yang Z, Feng T, Chen J, Khosravi Z, Wu Q, Cui H. Comprehensive review on glucose 6 phosphate dehydrogenase: A critical immunometabolic and redox switch in insects. Int J Biol Macromol 2024; 273:132867. [PMID: 38838892 DOI: 10.1016/j.ijbiomac.2024.132867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zihan Yang
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tianxiang Feng
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
11
|
Stuart CM, Jacob C, Varatharaj A, Howard S, Chouhan JK, Teeling JL, Galea I. Mild Systemic Inflammation Increases Erythrocyte Fragility. Int J Mol Sci 2024; 25:7027. [PMID: 39000133 PMCID: PMC11241827 DOI: 10.3390/ijms25137027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
There is growing evidence that inflammation impairs erythrocyte structure and function. We assessed the impact of mild systemic inflammation on erythrocyte fragility in three different settings. In order to investigate causation, erythrocyte osmotic fragility was measured in mice challenged with a live attenuated bacterial strain to induce low-grade systemic inflammation; a significant increase in erythrocyte osmotic fragility was observed. To gather evidence that systemic inflammation is associated with erythrocyte fragility in humans, two observational studies were conducted. First, using a retrospective study design, the relationship between reticulocyte-based surrogate markers of haemolysis and high-sensitivity C-reactive protein was investigated in 9292 healthy participants of the UK Biobank project. Secondly, we prospectively assessed the relationship between systemic inflammation (measured by the urinary neopterin/creatinine ratio) and erythrocyte osmotic fragility in a mixed population (n = 54) of healthy volunteers and individuals with long-term medical conditions. Both human studies were in keeping with a relationship between inflammation and erythrocyte fragility. Taken together, we conclude that mild systemic inflammation increases erythrocyte fragility and may contribute to haemolysis. Further research is needed to assess the molecular underpinnings of this pathway and the clinical implications in inflammatory conditions.
Collapse
Affiliation(s)
- Charlotte M. Stuart
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Carmen Jacob
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Sarah Howard
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Joe K. Chouhan
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Jessica L. Teeling
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
12
|
Fortuna V, Lima J, Oliveira GF, Oliveira YS, Getachew B, Nekhai S, Aschner M, Tizabi Y. Ferroptosis as an emerging target in sickle cell disease. Curr Res Toxicol 2024; 7:100181. [PMID: 39021403 PMCID: PMC11252799 DOI: 10.1016/j.crtox.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Vitor Fortuna
- Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Jaqueline Lima
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Gabriel F. Oliveira
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Yasmin S. Oliveira
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Departments of Microbiology and Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
13
|
Jercălău CE, Andrei CL, Brezeanu LN, Darabont RO, Guberna S, Catană A, Lungu MD, Ceban O, Sinescu CJ. Lymphocyte-to-Red Blood Cell Ratio-The Guide Star of Acute Coronary Syndrome Prognosis. Healthcare (Basel) 2024; 12:1205. [PMID: 38921319 PMCID: PMC11203887 DOI: 10.3390/healthcare12121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Beneath the surface of the acute ST-elevation myocardial infarction (STEMI) iceberg lies a hidden peril, obscured by the well-known cardiovascular risk factors that tip the iceberg. Before delving into the potential time bomb these risk factors represent, it is crucial to recognize the obscured danger lurking under the surface. What secrets does the STEMI iceberg hold? To unveil these mysteries, a closer look at the pathophysiology of STEMI is imperative. Inflammation, the catalyst of the STEMI cascade, sets off a chain reaction within the cardiovascular system. Surprisingly, the intricate interplay between red blood cells (RBC) and lymphocytes remains largely unexplored in previous research. MATERIALS AND METHODS The study encompassed 163 patients diagnosed with STEMI. Utilizing linear and logistic regression, the lymphocyte-to-red blood cell ratio (LRR) was scrutinized as a potential predictive biomarker. RESULTS There was a statistically significant correlation between LRR and the prognosis of STEMI patients. Building upon this discovery, an innovative scoring system was proposed that integrates LRR as a crucial parameter. CONCLUSIONS Uncovering novel predictive markers for both immediate and delayed complications in STEMI is paramount. These markers have the potential to revolutionize treatment strategies by tailoring them to individual risk profiles, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Cosmina Elena Jercălău
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Cătălina Liliana Andrei
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Lavinia Nicoleta Brezeanu
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Roxana Oana Darabont
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Suzana Guberna
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (M.D.L.)
| | - Andreea Catană
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Maria Diana Lungu
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (M.D.L.)
| | - Octavian Ceban
- Economic Cybernetics and Informatics Department, The Bucharest University of Economic Studies, 010374 Bucharest, Romania;
| | - Crina Julieta Sinescu
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| |
Collapse
|
14
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
15
|
Sandesha VD, Naveen P, Manikanta K, Mahalingam SS, Girish KS, Kemparaju K. Hump-Nosed Pit Viper ( Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine. Cells 2024; 13:994. [PMID: 38920625 PMCID: PMC11201549 DOI: 10.3390/cells13120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.
Collapse
Affiliation(s)
- Vaddaragudisalu D. Sandesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Puttaswamy Naveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, Karnataka, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| |
Collapse
|
16
|
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, Chen L, An D, Ma Y, Xu W, Tian Y, Lu L. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Antioxidants (Basel) 2024; 13:611. [PMID: 38790716 PMCID: PMC11117746 DOI: 10.3390/antiox13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Youwen Luo
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Lihua Wang
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Heshuang Di
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yun Cao
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Jianping Zhu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Dong An
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Yue Ma
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Lizhi Lu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| |
Collapse
|
17
|
Jin X, Zhang Y, Wang D, Zhang X, Li Y, Wang D, Liang Y, Wang J, Zheng L, Song H, Zhu X, Liang J, Ma J, Gao J, Tong J, Shi L. Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience 2024; 27:109315. [PMID: 38487547 PMCID: PMC10937114 DOI: 10.1016/j.isci.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
18
|
Wacka E, Nicikowski J, Jarmuzek P, Zembron-Lacny A. Anemia and Its Connections to Inflammation in Older Adults: A Review. J Clin Med 2024; 13:2049. [PMID: 38610814 PMCID: PMC11012269 DOI: 10.3390/jcm13072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Anemia is a common hematological disorder that affects 12% of the community-dwelling population, 40% of hospitalized patients, and 47% of nursing home residents. Our understanding of the impact of inflammation on iron metabolism and erythropoiesis is still lacking. In older adults, anemia can be divided into nutritional deficiency anemia, bleeding anemia, and unexplained anemia. The last type of anemia might be caused by reduced erythropoietin (EPO) activity, progressive EPO resistance of bone marrow erythroid progenitors, and the chronic subclinical pro-inflammatory state. Overall, one-third of older patients with anemia demonstrate a nutritional deficiency, one-third have a chronic subclinical pro-inflammatory state and chronic kidney disease, and one-third suffer from anemia of unknown etiology. Understanding anemia's pathophysiology in people aged 65 and over is crucial because it contributes to frailty, falls, cognitive decline, decreased functional ability, and higher mortality risk. Inflammation produces adverse effects on the cells of the hematological system. These effects include iron deficiency (hypoferremia), reduced EPO production, and the elevated phagocytosis of erythrocytes by hepatic and splenic macrophages. Additionally, inflammation causes enhanced eryptosis due to oxidative stress in the circulation. Identifying mechanisms behind age-related inflammation is essential for a better understanding and preventing anemia in older adults.
Collapse
Affiliation(s)
- Eryk Wacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Jan Nicikowski
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Pawel Jarmuzek
- Department of Neurosurgery and Neurology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| |
Collapse
|
19
|
Alexandrova-Watanabe A, Abadjieva E, Giosheva I, Langari A, Tiankov T, Gartchev E, Komsa-Penkova R, Todinova S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis-Impact of Oxidative Stress on Disease Severity. Int J Mol Sci 2024; 25:3732. [PMID: 38612543 PMCID: PMC11011533 DOI: 10.3390/ijms25073732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disease characterized by proteinuria, endothelial dysfunction, and placental hypoxia. Reduced placental blood flow causes changes in red blood cell (RBC) rheological characteristics. Herein, we used microfluidics techniques and new image flow analysis to evaluate RBC aggregation in preeclamptic and normotensive pregnant women. The results demonstrate that RBC aggregation depends on the disease severity and was higher in patients with preterm birth and low birth weight. The RBC aggregation indices (EAI) at low shear rates were higher for non-severe (0.107 ± 0.01) and severe PE (0.149 ± 0.05) versus controls (0.085 ± 0.01; p < 0.05). The significantly more undispersed RBC aggregates were found at high shear rates for non-severe (18.1 ± 5.5) and severe PE (25.7 ± 5.8) versus controls (14.4 ± 4.1; p < 0.05). The model experiment with in-vitro-induced oxidative stress in RBCs demonstrated that the elevated aggregation in PE RBCs can be partially due to the effect of oxidation. The results revealed that RBCs from PE patients become significantly more adhesive, forming large, branched aggregates at a low shear rate. Significantly more undispersed RBC aggregates at high shear rates indicate the formation of stable RBC clusters, drastically more pronounced in patients with severe PE. Our findings demonstrate that altered RBC aggregation contributes to preeclampsia severity.
Collapse
Affiliation(s)
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Ina Giosheva
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
| | | | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
20
|
Grüning NM, Ralser M. Monogenic Disorders of ROS Production and the Primary Anti-Oxidative Defense. Biomolecules 2024; 14:206. [PMID: 38397443 PMCID: PMC10887155 DOI: 10.3390/biom14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the cellular anti-oxidant defense mechanisms, plays a critical role in the pathogenesis of various human diseases. Redox metabolism, comprising a network of enzymes and genes, serves as a crucial regulator of ROS levels and maintains cellular homeostasis. This review provides an overview of the most important human genes encoding for proteins involved in ROS generation, ROS detoxification, and production of reduced nicotinamide adenine dinucleotide phosphate (NADPH), and the genetic disorders that lead to dysregulation of these vital processes. Insights gained from studies on inherited monogenic metabolic diseases provide valuable basic understanding of redox metabolism and signaling, and they also help to unravel the underlying pathomechanisms that contribute to prevalent chronic disorders like cardiovascular disease, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
21
|
Chatgilialoglu C. Biomarkers of Oxidative and Radical Stress. Biomolecules 2024; 14:194. [PMID: 38397431 PMCID: PMC10886573 DOI: 10.3390/biom14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are generated as a result of normal intracellular metabolism [...].
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR), 40129 Bologna, Italy;
- Center for Advanced Technologies, Adam Mickiewicz University, 61–614 Poznań, Poland
| |
Collapse
|
22
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
23
|
Vasilyeva EF, Savushkina OK, Prokhorova TA, Tereshkina EB, Boksha IS, Sizov SV, Oleichik IV. [Proinflammatory activity of monocytes and activity of glutathione-dependent enzymes in red blood cells in women with depressive conditions]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:120-125. [PMID: 39072577 DOI: 10.17116/jnevro2024124061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To search for possible connections between the anti-inflammatory activity of monocytes (PAM) and the activity of glutathione metabolic enzymes: glutathione reductase (GR) and glutathione-S-transferase (GT) in patients with depressive states (DS) within various mental pathologies, as well as between the studied biological parameters and clinical condition of patients. MATERIAL AND METHODS Sixty-one women, aged 18-56 years, with DC were examined before and after treatment. Symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depressive Symptom Rating Scale (HDRS-21). The control group included 23 women of the corresponding age without mental pathology. Biological parameters were assessed in the peripheral blood of patients and healthy people. RESULTS Patients with a high level of PAM compared to the control (p<0.001) (subgroup 1, n=31) and with a low (at the control level) level (subgroup 2, n=30) were identified. In the subgroup 1, the values of GR and GT were significantly lower than in patients of subgroup 2 (p<0.05 and p<0.01, respectively). Negative correlations between the level of PAM before treatment and GR before and after treatment were revealed in patients who responded to treatment (r=-0.67; p=0.0041; r=-0.76; p=0.0001). CONCLUSION The results may indicate the inverse relationship between the level of PAM and the activity of GR and GT, which are involved in the pathogenesis of DC, and can also serve as criteria for assessing the response of patients to treatment.
Collapse
Affiliation(s)
| | | | | | | | - I S Boksha
- Mental Health Research Center, Moscow, Russia
| | - S V Sizov
- Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
24
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|