1
|
Maurya P, Rawat RS, Gupta S, Krishna S, Siddiqi MI, Sashidhara KV, Banerjee D. Synergy between human DNA ligase I and topoisomerase 1 unveils new therapeutic strategy for the management of colorectal cancer. J Biomol Struct Dyn 2025; 43:3390-3405. [PMID: 38179981 DOI: 10.1080/07391102.2023.2297817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
DNA topoisomerase 1 (Topo 1) is a pivotal player in various DNA processes, including replication, repair, and transcription. It serves as a target for anticancer drugs like camptothecin and its derivatives (Topotecan and SN-38/Irinotecan). However, the emergence of drug resistance and the associated adverse effects, such as alopecia, anemia, dyspnea, fever, chills, and painful or difficult urination, pose significant challenges in Topo 1-targeted therapy, necessitating urgent attention. Human DNA Ligase 1 (hLig I), recognized primarily for its role in DNA replication and repair of DNA breaks, intriguingly exhibits a DNA relaxation activity akin to Topo 1. This raised the hypothesis that hLig I might compensate for Topo 1 inhibition, contributing to resistance against Topo 1 inhibitors. To explore this hypothesis, we assessed the efficacy of hLig I inhibition alone and in combination with Topo 1 in cancer cells. As anticipated, the overexpression of hLig I was observed after Topo 1 inhibition in colorectal cancer cells, affirming our hypothesis. Previously identified as an inhibitor of hLig I's DNA relaxation activity, compound 27 (C 27), when combined with Topotecan, demonstrated a synergistic antiproliferative effect on colorectal cancer cells. Notably, cells with downregulated hLig I (via siRNA, inhibitors, or genetic manipulation) exhibited significantly heightened sensitivity to Topotecan. This observation strongly supports the concept that hLig I contribute to resistance against clinically relevant Topo 1 inhibitors in colorectal cancers. In conclusion, our findings offer evidence for the synergistic impact of combining hLig I inhibitors with Topotecan in the treatment of colorectal cancers, providing a promising strategy to overcome resistance to Topo 1 inhibitors.
Collapse
Affiliation(s)
- Pooja Maurya
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rohit Singh Rawat
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sampa Gupta
- Jawaharlal Nehru University, New Delhi, India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shagun Krishna
- Jawaharlal Nehru University, New Delhi, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
2
|
Chang TY, Lin CJ, Wen SN, Wu YC, Wei CY, Huang JY, Tsao YH, Chen YJ, Tang WC, Wu YC, Lee WH, Huang TY, Kuo TM, Li WF, Lai MT. Preclinical evaluation of a novel antibody-drug conjugate OBI-992 for Cancer therapy. Sci Rep 2025; 15:8735. [PMID: 40082588 PMCID: PMC11906863 DOI: 10.1038/s41598-025-92697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2), a transmembrane glycoprotein highly expressed in a variety of epithelial cancers, has been considered as a primary therapeutic target for the development of antibody-drug conjugates (ADCs). OBI-992, an investigational TROP2-targeted ADC, is composed of a novel TROP2 antibody (R4702) conjugated to the topoisomerase I (TOP1) inhibitor exatecan through a hydrophilic enzyme-cleavable linker. This study aimed to characterize R4702 and OBI-992 in vitro. TROP2-targeted antibodies sacituzumab and datopotamab were employed as the comparators for R4702. ADCs sacituzumab govitecan (SG) and datopotamab deruxtecan (Dato-DXd) were used as benchmarks for OBI-992. Results revealed that R4702 binds to an epitope that is distinct from sacituzumab and datopotamab. The cytotoxicity of the OBI-992, SG, and Dato-DXd against different cancer cells is comparable despite they have different internalization profile. Upregulation of breast cancer resistance protein (BCRP) was observed in SG-resistant and Dato-DXd-resistant cells, but not in OBI-992-resistant cells. In addition, significant downregulation of TROP2 expression was detected with Dato-DXd-resistant cells and only slightly downregulation with SG- and OBI-992-resistant cells was observed. Moreover, substantial enhancement of cytotoxicity and DNA damage was found in the combination of OBI-992 with a poly (ADP-ribose) polymerase (PARP) inhibitor (talazoparib). Taken together, the findings in this study support further clinical development of OBI-992.
Collapse
Affiliation(s)
- Ting-Yu Chang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Chun-Jung Lin
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Shih-Ni Wen
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yi-Chen Wu
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Cheng-Yen Wei
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Jye-Yu Huang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yu-Hsuan Tsao
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yu-Jung Chen
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wei-Chien Tang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yuen-Chin Wu
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wei-Han Lee
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Teng-Yi Huang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Tzer-Min Kuo
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wan-Fen Li
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Ming-Tain Lai
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan.
| |
Collapse
|
3
|
Wang B, Shi T, Jia S, Wang E, Ruan X, Sheng C, Wu S, Zhou Q. Indolo[3,2- c]isoquinoline Hydroxamic Acid Derivatives as Novel Orally Topoisomerase-Histone Deacetylase Dual Inhibitors for NSCLC Therapy. J Med Chem 2025; 68:1300-1315. [PMID: 39442082 DOI: 10.1021/acs.jmedchem.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Based on the synergistic effects of topoisomerase (Top) inhibitors and histone deacetylase (HDAC) inhibitors in cancer therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized herein. The optimal compound 31 was identified to simultaneously inhibit both Tops and HDACs with potent antiproliferative activity against nonsmall cell lung cancer (NSCLC). Mechanistic studies indicated that compound 31 with increasing reactive oxygen species levels damages DNA, inhibiting cancer cell colony formation and migration and inducing both cancer cell apoptosis and cycle arrest. Noteworthily, compound 31 was orally active in the NSCLC xenograft model, and its antitumor efficacy (TGI = 77.5%, 100 mg/kg) was superior to that of HDAC inhibitor SAHA and SAHA in combination with the Top inhibitor irinotecan. Consequently, this work highlights the therapeutic potential of compound 31 as the Top/HDAC dual inhibitor in NSCLC therapy and provides valuable lead compounds for the further development of antitumor agents in solid tumor therapy.
Collapse
Affiliation(s)
- Bichuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Shi
- The Department of Urology Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shuolei Jia
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Enyuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shanchao Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Chiou J, Impedovo V, Huynh YB, Gorgoglione R, Penalva LOF, Lodi A, Brenner AJ, Tiziani S. Targeting Metabolic and Epigenetic Vulnerabilities in Glioblastoma with SN-38 and Rabusertib Combination Therapy. Int J Mol Sci 2025; 26:474. [PMID: 39859189 PMCID: PMC11764980 DOI: 10.3390/ijms26020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O6-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients. This underscores the need for novel, more targeted therapies. Our study investigates the metabolic-epigenetic impact of combining SN-38, a novel topoisomerase inhibitor inducing DNA double-strand breaks, with rabusertib, a checkpoint kinase 1 inhibitor. We identified this synergistic combination through high-throughput drug screening across a panel of GBM cell lines using a cancer drug library combined with SN-38. A secondary metabolic screening with the PEDS algorithm demonstrated a synergistic modulation of purine, one-carbon, and redox metabolism. Furthermore, the combined treatment led to the significant depletion of epigenetically relevant metabolites such as 5-methyl-cytosine, acetyl-lysine, and trimethyl-lysine. Reduced intermediates of the glutathione cycle indicated increased cellular stress following combinatorial treatment. Overall, the combination of SN-38 and rabusertib synergistically disrupts metabolites associated with epigenetic adaptations, leading to cytotoxicity independent of O6-methylguanine-DNA methyltransferase status, thereby underpinning this combination as a promising candidate for combinatorial therapy in GBM.
Collapse
Affiliation(s)
- Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Yen Bao Huynh
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Ruggiero Gorgoglione
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA;
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Andrew J. Brenner
- Mays Cancer Center, UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX 78229, USA;
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (J.C.); (V.I.); (Y.B.H.); (R.G.); (A.L.)
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| |
Collapse
|
5
|
Kobayashi S, Nishiba S, Sato C, Toriumi K, Someya Y, Adachi N, Takeda S, Kurosawa A. Sulforaphane Induces Transient Reactive Oxygen Species-Mediated DNA Damage in HeLa Cells. Genes Cells 2025; 30:e13190. [PMID: 39727047 DOI: 10.1111/gtc.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Sulforaphane (SFN), an isothiocyanate found in plants of the Brassicaceae family, possesses antioxidant, apoptosis-inducing, and radiosensitizing effects. As one of the mechanisms of cytotoxicity by SFN, SFN has been suggested to be involved in the induction of DNA damage and inhibition of DNA repair. Recently, we reported on the potency of SFN in inducing single-ended double-strand breaks (DSBs) that are caused by the collision of replication forks with single-strand breaks (SSBs). However, the mechanism of SSB accumulation by SFN remains unclear. In this study, we examined the effect of SFN on SSB-inducing factors in HeLa cells. Although the inhibitory effect of SFN on DNA topoisomerase I was not observed, we found that the reduced form of glutathione (GSH; an antioxidant) level was decreased in an SFN concentration-dependent manner. Furthermore, the addition of ascorbic acid partially increased the viability of SFN-treated HeLa cells. We subsequently observed that poly(ADP-ribose) accumulated in SFN-treated HeLa cells, which occurs during early SSB repair. Collectively, these findings suggest that SFN may transiently induce SSBs via reactive oxygen species in HeLa cells.
Collapse
Affiliation(s)
- Sakine Kobayashi
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Seiya Nishiba
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Chinatsu Sato
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Kazuya Toriumi
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yuduki Someya
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shigeki Takeda
- School of Science and Technology, Gunma University, Kiryu, Japan
| | - Aya Kurosawa
- School of Science and Technology, Gunma University, Kiryu, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Gunma University Center for Food and Science and Wellness, Gunma University, Kiryu, Japan
| |
Collapse
|
6
|
Flores-Vega JJ, Puente-Rivera J, Sosa-Mondragón SI, Camacho-Nuez M, Alvarez-Sánchez ME. RAD51 recombinase and its paralogs: Orchestrating homologous recombination and unforeseen functions in protozoan parasites. Exp Parasitol 2024; 267:108847. [PMID: 39414114 DOI: 10.1016/j.exppara.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The DNA of protozoan parasites is highly susceptible to damage, either induced by environmental agents or spontaneously generated during cellular metabolism through reactive oxygen species (ROS). Certain phases of the cell cycle, such as meiotic recombination, and external factors like ionizing radiation (IR), ultraviolet light (UV), or chemical genotoxic agents further increase this susceptibility. Among the various types of DNA damage, double-stranded breaks (DSBs) are the most critical, as they are challenging to repair and can result in genetic instability or cell death. DSBs caused by environmental stressors are primarily repaired via one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). In multicellular eukaryotes, NHEJ predominates, but in unicellular eukaryotes such as protozoan parasites, HR seems to be the principal mechanism for DSB repair. The HR pathway is orchestrated by proteins from the RAD52 epistasis group, including RAD51, RAD52, RAD54, RAD55, and the MRN complex. This review focuses on elucidating the diverse roles and significance of RAD51 recombinase and its paralogs in protozoan parasites, such as Acanthamoeba castellanii, Entamoeba histolytica (Amoebozoa), apicomplexan parasites (Chromalveolata), Naegleria fowleri, Giardia spp., Trichomonas vaginalis, and trypanosomatids (Excavata), where they primarily function in HR. Additionally, we analyze the diversity of proteins involved in HR, both upstream and downstream of RAD51, and discuss the implications of these processes in parasitic protozoa.
Collapse
Affiliation(s)
- Jose Jesús Flores-Vega
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico; División de Investigación. Hospital Juárez de México, Ciudad de México, 07760, Mexico.
| | - Sharon Itzel Sosa-Mondragón
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico.
| |
Collapse
|
7
|
Wang B, Wu S, Jia S, Ruan X, Sheng C, Zhou Q. Discovery of Indolo[3,2- c]isoquinoline Derivatives as Novel Top1/2 Dual Inhibitors with Orally Efficacious Antitumor Activity and Low Toxicity. J Med Chem 2024; 67:14155-14174. [PMID: 39106476 DOI: 10.1021/acs.jmedchem.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Topoisomerase (Top) inhibitors used in clinical cancer treatments are limited because of their toxicity and severe side effects. Noteworthily, Top1/2 dual inhibitors overcome the compensatory effect between Top1 and 2 inhibitors to exhibit stronger antitumor efficacies. In this study, a series of indolo[3,2-c]isoquinoline derivatives were designed as Top1/2 dual inhibitors possessing apparent antiproliferative activities. Mechanistic studies indicated that the optimal compounds 23 and 31 with increasing reactive oxygen species levels damage DNA, inducing both cancer cell apoptosis and cycle arrest. Importantly, the results of the toxicity studies showed that compounds 23 and 31 possessed good oral safety profiles. In xenograft models, compound 23 exhibited remarkable antitumor potency, which was superior to the clinical Top inhibitors irinotecan and etoposide. Overall, this work highlights the therapeutic potential and safety profile of compound 23 as a Top1/2 dual inhibitor in tumor therapy and provides valuable lead compounds for further development of Top inhibitors.
Collapse
Affiliation(s)
- Bichuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shanchao Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shuolei Jia
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
9
|
Gok E, Unal N, Gungor B, Karakus G, Kaya S, Canturk P, Katin KP. Evaluation of the Anticancer and Biological Activities of Istaroxime via Ex Vivo Analyses, Molecular Docking and Conceptual Density Functional Theory Computations. Molecules 2023; 28:7458. [PMID: 38005181 PMCID: PMC10672917 DOI: 10.3390/molecules28227458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that occurs as a result of abnormal or uncontrolled growth of cells due to DNA damage, among many other causes. Certain cancer treatments aim to increase the excess of DNA breaks to such an extent that they cannot escape from the general mechanism of cell checkpoints, leading to the apoptosis of mutant cells. In this study, one of the Sarco-endoplasmic reticulum Ca2+ATPase (SERCA2a) inhibitors, Istaroxime, was investigated. There has been very limited number of articles so far reporting Istaroxime's anticancer activity; thus, we aimed to evaluate the anticancer effects of Istaroxime by cell proliferation assay and revealed the cytotoxic activity of the compound. We further determined the interaction of Istaroxime with topoisomerase enzymes through enzyme activity tests and detailed molecular modeling analysis. Istaroxime exhibited an antiproliferative effect on A549, MCF7, and PC3 cell lines and inhibited Topoisomerase I, suggesting that Istaroxime can act as a Topoisomerase I inhibitor under in vitro conditions. Molecular docking analysis supported the experimental observations. A chemical reactivity analysis of the Istaroxime molecule was made in the light of Density Functional Theory computations. For this aim, important chemical reactivity descriptors such as hardness, electronegativity, and electrophilicity were computed and discussed as detailed.
Collapse
Affiliation(s)
- Ege Gok
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Naz Unal
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Burcin Gungor
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Gulderen Karakus
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Pakize Canturk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Konstantin P. Katin
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
| |
Collapse
|
10
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
11
|
Ohnmacht AJ, Stahler A, Stintzing S, Modest DP, Holch JW, Westphalen CB, Hölzel L, Schübel MK, Galhoz A, Farnoud A, Ud-Dean M, Vehling-Kaiser U, Decker T, Moehler M, Heinig M, Heinemann V, Menden MP. The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer. Nat Commun 2023; 14:5391. [PMID: 37666855 PMCID: PMC10477267 DOI: 10.1038/s41467-023-41011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Precision medicine has revolutionised cancer treatments; however, actionable biomarkers remain scarce. To address this, we develop the Oncology Biomarker Discovery (OncoBird) framework for analysing the molecular and biomarker landscape of randomised controlled clinical trials. OncoBird identifies biomarkers based on single genes or mutually exclusive genetic alterations in isolation or in the context of tumour subtypes, and finally, assesses predictive components by their treatment interactions. Here, we utilise the open-label, randomised phase III trial (FIRE-3, AIO KRK-0306) in metastatic colorectal carcinoma patients, who received either cetuximab or bevacizumab in combination with 5-fluorouracil, folinic acid and irinotecan (FOLFIRI). We systematically identify five biomarkers with predictive components, e.g., patients with tumours that carry chr20q amplifications or lack mutually exclusive ERK signalling mutations benefited from cetuximab compared to bevacizumab. In summary, OncoBird characterises the molecular landscape and outlines actionable biomarkers, which generalises to any molecularly characterised randomised controlled trial.
Collapse
Affiliation(s)
- Alexander J Ohnmacht
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Arndt Stahler
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Stintzing
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), partner sites Berlin and Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Dominik P Modest
- Charité Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Charitéplatz 1, 10117, Berlin, Germany
| | - Julian W Holch
- German Cancer Consortium (DKTK), partner sites Berlin and Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Linus Hölzel
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Marisa K Schübel
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Ana Galhoz
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany
| | - Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | | | | | - Markus Moehler
- Department of Medicine I and Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Clinic, 55131, Mainz, Germany
| | - Matthias Heinig
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, 81377, Munich, Germany.
| | - Michael P Menden
- Computational Health Center, Helmholtz Munich, 85764, Neuherberg, Germany.
- Department of Biology, Ludwig-Maximilians University Munich, 82152, Martinsried, Germany.
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
12
|
Chen R, Hao X, Chen J, Zhang C, Fan H, Lian F, Chen X, Wang C, Xia Y. Integrated multi-omics analyses reveal Jorunnamycin A as a novel suppressor for muscle-invasive bladder cancer by targeting FASN and TOP1. J Transl Med 2023; 21:549. [PMID: 37587470 PMCID: PMC10428641 DOI: 10.1186/s12967-023-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bladder cancer is a urological carcinoma with high incidence, among which muscle invasive bladder cancer (MIBC) is a malignant carcinoma with high mortality. There is an urgent need to develop new drugs with low toxicity and high efficiency for MIBC because existing medication has defects, such as high toxicity, poor efficacy, and side effects. Jorunnamycin A (JorA), a natural marine compound, has been found to have a high efficiency anticancer effect, but its anticancer function and mechanism on bladder cancer have not been studied. METHODS To examine the anticancer effect of JorA on MIBC, Cell Counting Kit 8, EdU staining, and colony formation analyses were performed. Moreover, a xenograft mouse model was used to verify the anticancer effect in vivo. To investigate the pharmacological mechanism of JorA, high-throughput quantitative proteomics, transcriptomics, RT-qPCR, western blotting, immunofluorescence staining, flow cytometry, pulldown assays, and molecular docking were performed. RESULTS JorA inhibited the proliferation of MIBC cells, and the IC50 of T24 and UM-UC-3 was 0.054 and 0.084 μM, respectively. JorA-induced significantly changed proteins were enriched in "cancer-related pathways" and "EGFR-related signaling pathways", which mainly manifested by inhibiting cell proliferation and promoting cell apoptosis. Specifically, JorA dampened the DNA synthesis rate, induced phosphatidylserine eversion, and inhibited cell migration. Furthermore, it was discovered that fatty acid synthase (FASN) and topoisomerase 1 (TOP1) are the JorA interaction proteins. Using DockThor software, the 3D docking structures of JorA binding to FASN and TOP1 were obtained (the binding affinities were - 8.153 and - 7.264 kcal/mol, respectively). CONCLUSIONS The marine compound JorA was discovered to have a specific inhibitory effect on MIBC, and its potential pharmacological mechanism was revealed for the first time. This discovery makes an important contribution to the development of new high efficiency and low toxicity drugs for bladder cancer therapy.
Collapse
Affiliation(s)
- Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China
| | - Xiaopeng Hao
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Jingyuan Chen
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Changyue Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huixia Fan
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Fuming Lian
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chao Wang
- Department of Urology, Jining No. 1 People's Hospital, Jining, 272106, Shandong, China.
| | - Yong Xia
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China.
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China.
| |
Collapse
|
13
|
Zhao M, DiPeri TP, Raso MG, Zheng X, Rizvi YQ, Evans KW, Yang F, Akcakanat A, Roberto Estecio M, Tripathy D, Dumbrava EE, Damodaran S, Meric-Bernstam F. Epigenetically upregulating TROP2 and SLFN11 enhances therapeutic efficacy of TROP2 antibody drug conjugate sacitizumab govitecan. NPJ Breast Cancer 2023; 9:66. [PMID: 37567892 PMCID: PMC10421911 DOI: 10.1038/s41523-023-00573-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab govitecan (SG). Demethylating agent decitabine decreases DNA methyltransferase expression and TROP2 promoter methylation and subsequently increases TROP2 expression. Decitabine treatment as well as overexpression of TROP2 significantly enhance SG antitumor activity. Decitabine also increases SLFN11, a biomarker of topoisomerase 1 inhibitor (TOP1) sensitivity and is synergistic with SG which has a TOP1 payload, in TROP2-expressing SLFN11-low BC cells. In conclusion, TROP2 and SLFN11 expression can be epigenetically modulated and the combination of demethylating agent decitabine with TROP2 ADCs may represent a novel therapeutic approach for tumors with low TROP2 or SLFN11 expression.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P DiPeri
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yasmeen Qamar Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Roberto Estecio
- Department of Epigenetic and Molecular Carcinogenesis, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Al Saihati HA, Rabaan AA. Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy. Saudi Med J 2023; 44:329-344. [PMID: 37062547 PMCID: PMC10153614 DOI: 10.15537/smj.2023.44.4.20220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Despite major advancements in cancer healing approaches over the last few decades, chemotherapy remains the most popular malignancy treatment. Chemotherapeutic drugs are classified into many kinds based on their mechanism of action. Multidrug resistance (MDR) is responsible for approximately 90% of fatalities in malignancy cases treated with standard chemotherapeutics or innovative targeted medicines. Many innovative prospective anti-cancer medicines displayed high anti-cancer efficacy in a single application. However, combining them with other medications improves cancer treatment efficacy. This supports the belief that a combination of drugs is significantly more effective than a single medicine. Due to the intricacy of MDR processes and the diversity of tumor illnesses, there will rarely be a single medicine that can be utilized to treat all types of cancer. Finding new medications that can reverse MDR in malignancy cells will augment efficacy of chemotherapeutic agents and allow us to treat cancers that are now incurable.
Collapse
Affiliation(s)
- Hajir A. Al Saihati
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| | - Ali A. Rabaan
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Jiang X, Xu X, Wang B, Song K, Zhang J, Chen Y, Tian Y, Weng J, Liang Y, Ma W. Adverse effects of 2-Methoxyestradiol on mouse oocytes during reproductive aging. Chem Biol Interact 2023; 369:110277. [PMID: 36414027 DOI: 10.1016/j.cbi.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
2-Methoxyestradiol (2-ME2) is a metabolite of 17β-estradiol and is currently in clinical trials as an antitumor agent. Here we found 2-ME2 level remains stable in the local environment of ovaries but declines in serum in aging mice, and exogenous 2-ME2 impacts the meiotic maturation of mouse oocytes in dose-dependent manner. In vitro 2-ME2 application arrested oocytes at metaphase I (MI), with abnormal spindle structure and chromosome alignment. 2-ME2 exposure induced excessive production of reactive oxygen species (ROS) and malondialdehyde, as well as accelerated apoptosis progression. 2-ME2 unbalanced mitochondrial dynamics by increasing DRP1 and MFN1 while decreasing Opa1. Similar phenotypes were also observed in oocytes from mice injected intraperitoneally with 2-ME2. Taken together, this study indicates 2-ME2 exposure impairs oocyte meiotic maturation through inducing mitochondrial imbalance, oxidative stress and apoptosis. The gradual decline in oocyte quality and quantity may be associated with the stable 2-ME2 in ovaries during female reproductive aging.
Collapse
Affiliation(s)
- Xiuying Jiang
- Devision of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
18
|
Madeddu F, Di Martino J, Pieroni M, Del Buono D, Bottoni P, Botta L, Castrignanò T, Saladino R. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of New Drugs against Human Topoisomerase I Receptor. Int J Mol Sci 2022; 23:ijms232314652. [PMID: 36498979 PMCID: PMC9737192 DOI: 10.3390/ijms232314652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human Topoisomerase I (hTop1p) is a ubiquitous enzyme that relaxes supercoiled DNA through a conserved mechanism involving transient breakage, rotation, and binding. Htop1p is the molecular target of the chemotherapeutic drug camptothecin (CPT). It causes the hTop1p-DNA complex to slow down the binding process and clash with the replicative machinery during the S phase of the cell cycle, forcing cells to activate the apoptotic response. This gives hTop1p a central role in cancer therapy. Recently, two artesunic acid derivatives (compounds c6 and c7) have been proposed as promising inhibitors of hTop1p with possible antitumor activity. We used several computational approaches to obtain in silico confirmations of the experimental data and to form a comprehensive dynamic description of the ligand-receptor system. We performed molecular docking analyses to verify the ability of the two new derivatives to access the enzyme-DNA interface, and a classical molecular dynamics simulation was performed to assess the capacity of the two compounds to maintain a stable binding pose over time. Finally, we calculated the noncovalent interactions between the two new derivatives and the hTop1p receptor in order to propose a possible inhibitory mechanism like that adopted by CPT.
Collapse
Affiliation(s)
- Francesco Madeddu
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Jessica Di Martino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Michele Pieroni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Davide Del Buono
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Paolo Bottoni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence:
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
19
|
Sarni D, Barroso S, Shtrikman A, Irony-Tur Sinai M, Oren YS, Aguilera A, Kerem B. Topoisomerase 1-dependent R-loop deficiency drives accelerated replication and genomic instability. Cell Rep 2022; 40:111397. [PMID: 36170822 PMCID: PMC9532845 DOI: 10.1016/j.celrep.2022.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
DNA replication is a complex process tightly regulated to ensure faithful genome duplication, and its perturbation leads to DNA damage and genomic instability. Replication stress is commonly associated with slow and stalled replication forks. Recently, accelerated replication has emerged as a non-canonical form of replication stress. However, the molecular basis underlying fork acceleration is largely unknown. Here, we show that mutated HRAS activation leads to increased topoisomerase 1 (TOP1) expression, causing aberrant replication fork acceleration and DNA damage by decreasing RNA-DNA hybrids or R-loops. In these cells, restoration of TOP1 expression or mild replication inhibition rescues the perturbed replication and reduces DNA damage. Furthermore, TOP1 or RNaseH1 overexpression induces accelerated replication and DNA damage, highlighting the importance of TOP1 equilibrium in regulating R-loop homeostasis to ensure faithful DNA replication and genome integrity. Altogether, our results dissect a mechanism of oncogene-induced DNA damage by aberrant replication fork acceleration. Increased TOP1 expression by mutated RAS reduces R loops Low R-loop levels promote accelerated replication and DNA damage TOP1 restoration or mild replication inhibition rescue DNA acceleration and damage High TOP1 expression is associated with replication mutagenesis in cancer
Collapse
Affiliation(s)
- Dan Sarni
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Sonia Barroso
- Department of Genome Biology, Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Seville Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Alon Shtrikman
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Yifat S Oren
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Andrés Aguilera
- Department of Genome Biology, Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Seville Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
20
|
A clinically relevant heterozygous ATR mutation sensitizes colorectal cancer cells to replication stress. Sci Rep 2022; 12:5422. [PMID: 35361811 PMCID: PMC8971416 DOI: 10.1038/s41598-022-09308-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most frequent malignancies and represents the second most common cause of cancer-related deaths worldwide. By interfering with the DNA replication process of cancer cells, several chemotherapeutic molecules used in CRC therapy induce replication stress (RS). At the cellular level, this stress is managed by the ATR-CHK1 pathway, which activates the replication checkpoint. In recent years, the therapeutic value of targeting this pathway has been demonstrated. Moreover, MSI + (microsatellite instability) tumors frequently harbor a nonsense, heterozygous mutation in the ATR gene. Using isogenic HCT116 clones, we showed that this mutation of ATR sensitizes the cells to several drugs, including SN-38 (topoisomerase I inhibitor) and VE-822 (ATR inhibitor) and exacerbates their synergistic effects. We showed that this mutation bottlenecks the replication checkpoint leading to extensive DNA damage. The combination of VE-822 and SN-38 induces an exhaustion of RPA and a subsequent replication catastrophe. Surviving cells complete replication and accumulate in G2 in a DNA-PK-dependent manner, protecting them from cell death. Together, our results suggest that RPA and DNA-PK represent promising therapeutic targets to optimize the inhibition of the ATR-CHK1 pathway in oncology. Ultimately, ATR frameshift mutations found in patients may also represent important prognostic factors.
Collapse
|
21
|
Machine Learning analysis of high-grade serous ovarian cancer proteomic dataset reveals novel candidate biomarkers. Sci Rep 2022; 12:3041. [PMID: 35197484 PMCID: PMC8866540 DOI: 10.1038/s41598-022-06788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies, ranking third after cervical and uterine cancer. High-grade serous ovarian cancer (HGSOC) is one of the most aggressive subtype, and the late onset of its symptoms leads in most cases to an unfavourable prognosis. Current predictive algorithms used to estimate the risk of having Ovarian Cancer fail to provide sufficient sensitivity and specificity to be used widely in clinical practice. The use of additional biomarkers or parameters such as age or menopausal status to overcome these issues showed only weak improvements. It is necessary to identify novel molecular signatures and the development of new predictive algorithms able to support the diagnosis of HGSOC, and at the same time, deepen the understanding of this elusive disease, with the final goal of improving patient survival. Here, we apply a Machine Learning-based pipeline to an open-source HGSOC Proteomic dataset to develop a decision support system (DSS) that displayed high discerning ability on a dataset of HGSOC biopsies. The proposed DSS consists of a double-step feature selection and a decision tree, with the resulting output consisting of a combination of three highly discriminating proteins: TOP1, PDIA4, and OGN, that could be of interest for further clinical and experimental validation. Furthermore, we took advantage of the ranked list of proteins generated during the feature selection steps to perform a pathway analysis to provide a snapshot of the main deregulated pathways of HGSOC. The datasets used for this study are available in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal (https://cptac-data-portal.georgetown.edu/).
Collapse
|
22
|
Singh V, Johansson P, Ekedahl E, Lin YL, Hammarsten O, Westerlund F. Quantification of single-strand DNA lesions caused by the topoisomerase II poison etoposide using single DNA molecule imaging. Biochem Biophys Res Commun 2022; 594:57-62. [DOI: 10.1016/j.bbrc.2022.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
23
|
van den Boogaard WMC, Komninos DSJ, Vermeij WP. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers (Basel) 2022; 14:627. [PMID: 35158895 PMCID: PMC8833520 DOI: 10.3390/cancers14030627] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances have increased survival rates of children and adults suffering from cancer thanks to effective anti-cancer therapy, such as chemotherapy. However, during treatment and later in life they are frequently confronted with the severe negative side-effects of their life-saving treatment. The occurrence of numerous features of accelerated aging, seriously affecting quality of life, has now become one of the most pressing problems associated with (pediatric) cancer treatment. Chemotherapies frequently target and damage the DNA, causing mutations or genome instability, a major hallmark of both cancer and aging. However, there are numerous types of chemotherapeutic drugs that are genotoxic and interfere with DNA metabolism in different ways, each with their own biodistribution, kinetics, and biological fate. Depending on the type of DNA lesion produced (e.g., interference with DNA replication or RNA transcription), the organ or cell type inflicted (e.g., cell cycle or differentiation status, metabolic state, activity of clearance and detoxification mechanisms, the cellular condition or micro-environment), and the degree of exposure, outcomes of cancer treatment can largely differ. These considerations provide a conceptual framework in which different classes of chemotherapeutics contribute to the development of toxicities and accelerated aging of different organ systems. Here, we summarize frequently observed side-effects in (pediatric) ex-cancer patients and discuss which types of DNA damage might be responsible.
Collapse
Affiliation(s)
- Winnie M. C. van den Boogaard
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (W.M.C.v.d.B.); (D.S.J.K.)
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| | - Daphne S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (W.M.C.v.d.B.); (D.S.J.K.)
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (W.M.C.v.d.B.); (D.S.J.K.)
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
24
|
Wu K, Peng X, Chen M, Li Y, Tang G, Peng J, Peng Y, Cao X. Recent progress of research on anti‐tumor agents using benzimidazole as the structure unit. Chem Biol Drug Des 2022; 99:736-757. [DOI: 10.1111/cbdd.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Miaojia Chen
- Department of Pharmacy the first People's Hospital Pingjiang Yueyang Hunan China
| | - Yang Li
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering East China Jiaotong University Nanchang 330000 China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| |
Collapse
|
25
|
Olszewska A, Borkowska A, Granica M, Karolczak J, Zglinicki B, Kieda C, Was H. Escape From Cisplatin-Induced Senescence of Hypoxic Lung Cancer Cells Can Be Overcome by Hydroxychloroquine. Front Oncol 2022; 11:738385. [PMID: 35127467 PMCID: PMC8813758 DOI: 10.3389/fonc.2021.738385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is the commonly used treatment for advanced lung cancer. However, it produces side effects such as the development of chemoresistance. A possible responsible mechanism may be therapy-induced senescence (TIS). TIS cells display increased senescence-associated β-galactosidase (SA-β-gal) activity and irreversible growth arrest. However, recent data suggest that TIS cells can reactivate their proliferative potential and lead to cancer recurrence. Our previous study indicated that reactivation of proliferation by TIS cells might be related with autophagy modulation. However, exact relationship between both processes required further studies. Therefore, the aim of our study was to investigate the role of autophagy in the senescence-related chemoresistance of lung cancer cells. For this purpose, human and murine lung cancer cells were treated with two commonly used chemotherapeutics: cisplatin (CIS), which forms DNA adducts or docetaxel (DOC), a microtubule poison. Hypoxia, often overlooked in experimental settings, has been implicated as a mechanism responsible for a significant change in the response to treatment. Thus, cells were cultured under normoxic (~19% O2) or hypoxic (1% O2) conditions. Herein, we show that hypoxia increases resistance to CIS. Lung cancer cells cultured under hypoxic conditions escaped from CIS-induced senescence, displayed reduced SA-β-gal activity and a decreased percentage of cells in the G2/M phase of the cell cycle. In turn, hypoxia increased the proliferation of lung cancer cells and the proportion of cells proceeding to the G0/G1 phase. Further molecular analyses demonstrated that hypoxia inhibited the prosenescent p53/p21 signaling pathway and induced epithelial to mesenchymal transition in CIS-treated cancer cells. In cells treated with DOC, such effects were not observed. Of importance, pharmacological autophagy inhibitor, hydroxychloroquine (HCQ) was capable of overcoming short-term CIS-induced resistance of lung cancer cells in hypoxic conditions. Altogether, our data demonstrated that hypoxia favors cancer cell escape from CIS-induced senescence, what could be overcome by inhibition of autophagy with HCQ. Therefore, we propose that HCQ might be used to interfere with the ability of senescent cancer cells to repopulate following exposure to DNA-damaging agents. This effect, however, needs to be tested in a long-term perspective for preclinical and clinical applications.
Collapse
Affiliation(s)
- Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Monika Granica
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Karolczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bartosz Zglinicki
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- *Correspondence: Halina Was,
| |
Collapse
|
26
|
Farhana A, Koh AEH, Kothandan S, Alsrhani A, Mok PL, Subbiah SK. Treatment of HT29 Human Colorectal Cancer Cell Line with Nanocarrier-Encapsulated Camptothecin Reveals Histone Modifier Genes in the Wnt Signaling Pathway as Important Molecular Cues for Colon Cancer Targeting. Int J Mol Sci 2021; 22:ijms222212286. [PMID: 34830168 PMCID: PMC8623831 DOI: 10.3390/ijms222212286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth. This involves a complex epigenetic interaction within the cell, which drives it towards oncogenic transformations. These epigenetic events augment cellular growth by potentially altering chromatin structures and influencing key gene expressions. Therapeutic mechanisms have been developed to combat this by taking advantage of the underlying oncogenic mechanisms through chemical modulation. Camptothecin (CPT) is an example of this type of drug. It is a selective topoisomerase I inhibitor that is effective against many cancers, such as colorectal cancer. Previously, we successfully formulated a magnetic nanocarrier-conjugated CPT with β-cyclodextrin and iron NPs (Fe3O4) cross-linked using EDTA (CPT-CEF). Compared to CPT alone, it boasts higher efficacy due to its selective targeting and increased solubility. In this study, we treated HT29 colon cancer cells with CPT-CEF and attempted to investigate the cytotoxic effects of the formulation through an epigenetic perspective. By using RNA-Seq, several differentially expressed genes were obtained (p < 0.05). Enrichr was then used for the over-representation analysis, and the genes were compared to the epigenetic roadmap and histone modification database. The results showed that the DEGs had a high correlation with epigenetic modifications involving histone H3 acetylation. Furthermore, a subset of these genes was shown to be associated with the Wnt/β-catenin signaling pathway, which is highly upregulated in a large number of cancer cells. These genes could be investigated as downstream therapeutic targets against the uncontrolled proliferation of cancer cells. Further interaction analysis of the identified genes with the key genes of the Wnt/β-catenin signaling pathway in colorectal cancer identified the direct interactors and a few transcription regulators. Further analysis in cBioPortal confirmed their genetic alterations and their distribution across patient samples. Thus, the findings of this study reveal that colorectal cancer could be reversed by treatment with the CPT-CEF nanoparticle-conjugated nanocarrier through an epigenetic mechanism.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (P.L.M.)
- Correspondence: (A.F.); (S.K.S.)
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Sangeetha Kothandan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (P.L.M.)
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.A.); (P.L.M.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, India
- Correspondence: (A.F.); (S.K.S.)
| |
Collapse
|
27
|
Oliveira ÉAD, Chauhan J, Silva JRD, Carvalho LADC, Dias D, Carvalho DGD, Watanabe LRM, Rebecca VW, Mills G, Lu Y, da Silva ASF, Consolaro MEL, Herlyn M, Possik PA, Goding CR, Maria-Engler SS. TOP1 modulation during melanoma progression and in adaptative resistance to BRAF and MEK inhibitors. Pharmacol Res 2021; 173:105911. [PMID: 34560251 DOI: 10.1016/j.phrs.2021.105911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
In melanomas, therapy resistance can arise due to a combination of genetic, epigenetic and phenotypic mechanisms. Due to its crucial role in DNA supercoil relaxation, TOP1 is often considered an essential chemotherapeutic target in cancer. However, how TOP1 expression and activity might differ in therapy sensitive versus resistant cell types is unknown. Here we show that TOP1 expression is increased in metastatic melanoma and correlates with an invasive gene expression signature. More specifically, TOP1 expression is highest in cells with the lowest expression of MITF, a key regulator of melanoma biology. Notably, TOP1 and DNA Single-Strand Break Repair genes are downregulated in BRAFi- and BRAFi/MEKi-resistant cells and TOP1 inhibition decreases invasion markers only in BRAFi/MEKi-resistant cells. Thus, we show three different phenotypes related to TOP1 levels: i) non-malignant cells with low TOP1 levels; ii) metastatic cells with high TOP1 levels and high invasiveness; and iii) BRAFi- and BRAFi/MEKi-resistant cells with low TOP1 levels and high invasiveness. Together, these results highlight the potential role of TOP1 in melanoma progression and resistance.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Julia Rezende da Silva
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Larissa Anastacio da Costa Carvalho
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | | | - Luis Roberto Masao Watanabe
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Yiling Lu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aloisio Souza Felipe da Silva
- Department of Pathology, Anatomic Pathology Service, University Hospital, University of São Paulo, São Paulo, Brazil
| | | | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, PA, USA
| | - Patricia A Possik
- Division of Cellular Biology, Brazilian National Cancer Institute, Brazil
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Silvya Stuchi Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil.
| |
Collapse
|
28
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Abstract
Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.
Collapse
Affiliation(s)
- Dong-Han Wi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon 22212, Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
30
|
Yang C, Zhang Y, Segar N, Huang C, Zeng P, Tan X, Mao L, Chen Z, Haglund F, Larsson O, Chen Z, Lin Y. Nuclear IGF1R interacts with NuMA and regulates 53BP1‑dependent DNA double‑strand break repair in colorectal cancer. Oncol Rep 2021; 46:168. [PMID: 34165167 PMCID: PMC8250583 DOI: 10.3892/or.2021.8119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear insulin-like growth factor 1 receptor (nIGF1R) has been associated with poor overall survival and chemotherapy resistance in various types of cancer; however, the underlying mechanism remains unclear. In the present study, immunoprecipitation-coupled mass spectrometry was performed in an IGF1R-overexpressing SW480-OE colorectal cancer cell line to identify the nIGF1R interactome. Network analysis revealed 197 proteins of interest which were involved in several biological pathways, including RNA processing, DNA double-strand break (DSB) repair and SUMOylation pathways. Nuclear mitotic apparatus protein (NuMA) was identified as one of nIGF1R's colocalizing partners. Proximity ligation assay (PLA) revealed different levels of p53-binding protein 1 (53BP1)-NuMA colocalization between IGF1R-positive (R+) and IGF1R-negative (R−) mouse embryonic fibroblasts following exposure to ionizing radiation (IR). 53BP1 was retained by NuMA in the R− cells during IR-induced DNA damage. By contrast, the level of NuMA-53BP1 was markedly lower in R+ cells compared with R− cells. The present data suggested a regulatory role of nIGF1R in 53BP1-dependent DSB repair through its interaction with NuMA. Bright-field PLA analysis on a paraffin-embedded tissue microarray from patients with colorectal cancer revealed a significant association between increased nuclear colocalizing signals of NuMA-53BP1 and a shorter overall survival. These results indicate that nIGF1R plays a role in facilitating 53BP1-dependent DDR by regulating the NuMA-53BP1 interaction, which in turn might affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yifan Zhang
- Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, 171 64 Solna, Stockholm, Sweden
| | - Nelly Segar
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Changhao Huang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Pengwei Zeng
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Linfeng Mao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
31
|
Morelli C, Formica V, Riondino S, Russo A, Ferroni P, Guadagni F, Roselli M. Irinotecan or Oxaliplatin: Which is the First Move for the Mate? Curr Med Chem 2021; 28:3158-3172. [PMID: 33069191 DOI: 10.2174/0929867327666201016124950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of the present review is to discuss the potential link between RAS, BRAF and microsatellite instability (MSI) mutational patterns and chemotherapeutic agent efficacy [Irinotecan (IRI) vs. Oxaliplatin (OXA)], and how this can potentially influence the choice of the chemotherapy backbone. METHODS Following a review of the research literature, all pertinent articles published in the core journals were selected for the study. The inclusion criteria regarded relevant clinical and pre-clinical studies on the topic of interest (Relationship of OXA and IRI to KRAS/BRAF mutations and MSI). RESULTS Excision repair cross complementation group 1 (ERCC1) expression is inhibited by KRAS mutation, making tumor cells more sensitive to OXA. Results from OPUS, COIN and PRIME trials support that no conclusive data are available for BRAF mutant population because of the small number of patients. Enhanced IRI cytotoxicity to MSI cell lines is due to the participation of some of the mismatch repair (MMR) components in various DNA repair processes and their role in the maintenance of the pro-apoptotic effect of IRI and G2/M cell arrest. CONCLUSION OXA and IRI are indispensable drugs for mCRC treatment and their selection must be as careful as that of targeted agents. We suggest taking into consideration the interaction between known genomic alterations and OXA and IRI activity to personalize chemotherapy in mCRC patients.
Collapse
Affiliation(s)
- Cristina Morelli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Vincenzo Formica
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Silvia Riondino
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology Unit, Tor Vergata Clinical Center, Tor Vergata University of Rome, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
32
|
Sarkate AP, Dofe VS, Tiwari SV, Lokwani DK, Karnik KS, Kamble DD, Ansari MHSH, Dodamani S, Jalalpure SS, Sangshetti JN, Azad R, Burra PVLS, Bhandari SV. One pot synthesis, in silico study and evaluation of some novel flavonoids as potent topoisomerase II inhibitors. Bioorg Med Chem Lett 2021; 40:127916. [PMID: 33689875 DOI: 10.1016/j.bmcl.2021.127916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
A library of novel flavonoid derivatives with diverse heterocyclic groups was designed and efficiently synthesized. Structures of the newly synthesized compounds 4a-i and 8a-l have been characterized by 1H NMR, 13C NMR, MS and elemental analysis. Anticancer activities were evaluated against MCF-7, A549, HepG2 and MCF-10A by MTT based assay. Compared with the positive control Adriamycin, compounds 4a, 4b, 4c, 4d, 8d, 8e and 8j were found to be most active anti-proliferative compounds against human cancer cell line. We found that compounds 4a and 4c exhibited inhibition of enzyme topoisomerase II with IC50 values 10.28 and 12.38 μM, respectively. In silico docking study of synthesized compounds showed that compounds 4a and 4c have good binding affinity toward topoisomerase IIα enzyme and have placed in between DNA base pair at active site of enzyme. In silico ADME prediction results that flavonoid coumarin analogues 4a-i could be exploited as an oral drug candidate.
Collapse
Affiliation(s)
- Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra, India.
| | - Vidya S Dofe
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Shailee V Tiwari
- Department of Pharmaceutical Chemistry, Durgamata Institute of Pharmacy, Dharmapuri, Parbhani 431401, Maharashtra, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur 425405, Maharashtra, India.
| | - Kshipra S Karnik
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra, India
| | - Darshana D Kamble
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra, India
| | - Mujahed H S H Ansari
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra, India
| | - Suneel Dodamani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil S Jalalpure
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India; KLE College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | | | - Rajaram Azad
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - Prasad V L S Burra
- Department of Biotechnology, KLEF University, Vaddeswaram 522502, AP, India
| | - Shashikant V Bhandari
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Near RTO, Kennedy Road, Pune 411001, Maharashtra, India
| |
Collapse
|
33
|
Pocasap P, Nonpunya A, Weerapreeyakul N. Pinus kesiya Royle ex Gordon induces apoptotic cell death in hepatocellular carcinoma HepG2 cell via intrinsic pathway by PARP and Topoisomerase I suppression. Biomed Pharmacother 2021; 139:111628. [PMID: 33940508 DOI: 10.1016/j.biopha.2021.111628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022] Open
Abstract
Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand.
| | - Apiyada Nonpunya
- Merz Healthcare (Thailand) Company Limited, Bangkok 10110 Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
34
|
Lantsova A, Golubeva I, Borisova L, Nikolaeva L, Ektova L, Dmitrieva M, Orlova O. A new indolocarbazole derivative in melanoma and carcinoma lung in vivo treatment. BMC Complement Med Ther 2021; 21:117. [PMID: 33838683 PMCID: PMC8037905 DOI: 10.1186/s12906-021-03294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The current scientific research direction is development of drugs with a targeted effect on malignant tumors. One of the promising groups is indolocarbazoles and their derivatives, which can initiate various tumor cell death pathways. Russian scientists from N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation has developed a new experimental drug form of the original compound LCS 1269 with cytotoxic and antiangiogenic properties, blocking vasculogenic mimicry in tumor. The study aim is the experimental drug form LCS 1269 antitumor activity on models of transplantable mouse tumors B-16 melanoma and Lewis epidermoid lung carcinoma (LLC) with different routes and modes of administration. Material and methods Female F1 hybrid mice (C57Bl/6 x DBA/2) and male and female linear mice C57BL/6 were used for management of tumor strains. Mice were obtained from N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation vivarium. The antitumor effect was assessed by tumor growth inhibition (TGI) and increase of treated animal’s life span (ILS) compared to the control. Results The experimental drug form showed high antitumor activity when administered intravenously once at doses of 100 and 120 mg/kg (TGI = 98–82% and TGI = 95–77%, respectively, ILS = 24%, p < 0.05) on melanoma B-16 mice. On LLC mice, the experimental drug form showed that the intravenous administration route was effective in the range of doses from 60 to 80 mg/kg with a 5 day administration regimen with an interval of 24 h. A dose of 70 mg/kg had maximum effect at the level of TGI = 96–77% (p < 0.05) with its retention for 20 days after the end of treatment. Conclusion The studies have shown that the new compound LCS 1269 in the original drug form, has a pronounced antitumor activity and significantly reduces the volume of tumor mass both on melanoma B-16 and on LLC. It allows us to recommend continue the search for sensitivity of animal transplantable tumors to LCS 1269.
Collapse
Affiliation(s)
- Anna Lantsova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Irina Golubeva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Larisa Borisova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Lyudmila Nikolaeva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia. .,Department of Pharmaceutical Technology and Pharmacology, Sechenov University, 8/2 Trubeckaya str., 119991, Moscow, Russia.
| | - Lydia Ektova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Maria Dmitrieva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Olga Orlova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| |
Collapse
|
35
|
Witt JS, Wisinski KB, Anderson BM. Concurrent Radiation and Modern Systemic Therapies for Breast Cancer: An Ever-Expanding Frontier. Clin Breast Cancer 2021; 21:120-127. [PMID: 34030859 DOI: 10.1016/j.clbc.2020.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
Radiotherapy is a critical tool for reducing locoregional recurrence, extending survival, and palliating symptoms in patients with breast cancer. With an ever-expanding armamentarium of systemic agents available, and an increasing trend toward the use of hypofractionated radiation regimens, it can be difficult to determine the safety of concurrent therapy. In particular, new targeted agents in both the adjuvant and metastatic setting have limited prospective or long-term data demonstrating safety when delivered concurrently with radiotherapy. Other systemic agents, including chemotherapy and endocrine therapy, are also important components of the overall treatment strategy for localized and metastatic breast cancer, and are often delivered concurrently with radiation in certain clinical scenarios. This review explores the safety, efficacy, and pitfalls of delivering radiation in conjunction with systemic therapies for breast cancer.
Collapse
Affiliation(s)
- Jacob S Witt
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Kari B Wisinski
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Bethany M Anderson
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI.
| |
Collapse
|
36
|
Prasher P, Sharma M, Zacconi F, Gupta G, Aljabali AA, Mishra V, Tambuwala MM, Kapoor DN, Negi P, Andreoli Pinto TDJ, Singh I, Chellappan DK, Dua K. Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200820152501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azole frameworks serve as privileged scaffolds in the contemporary drug design
paradigm owing to their unique physicochemical profile that promotes the development
of highly selective, physiological benevolent chemotherapeutics. Several azole nuclei
function as bioisostere in medicinal chemistry and prompt the development of tailored
therapeutics for targeting the desired biological entities. Besides, the azole scaffold forms
an integral part in the advanced drug designing methodologies, such as target template insitu
drug synthesis, that assists in rapid identification of the hit molecules form a diverse
pool of leads; and direct biomolecule-drug conjugation, along with bioorthogonal strategies
that ensure localization, and superior target specificity of the directed therapeutic.
Lastly, the structural diversity of azole framework and high yielding click synthetic methods
provide a comprehensive Structure-Activity Relationship analysis for design optimization of the potential
drug molecules by fine-tuning the placement of different substituents critical for the activity. This review provides
a comprehensive analysis of the synthesis and anticancer potential of azole based chemotherapeutics.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun 248007, India
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302 017, Jaipur, India
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, United Kingdom
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo 05508-000, Brazil
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
37
|
Statello L, Ali MM, Reischl S, Mahale S, Kosalai ST, Huarte M, Kanduri C. The DNA damage inducible lncRNA SCAT7 regulates genomic integrity and topoisomerase 1 turnover in lung adenocarcinoma. NAR Cancer 2021; 3:zcab002. [PMID: 34316698 PMCID: PMC8209975 DOI: 10.1093/narcan/zcab002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.
Collapse
Affiliation(s)
- Luisa Statello
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Mohamad M Ali
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Silke Reischl
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
38
|
Liu Y, Lin YL, Pasero P, Chen CL. Topoisomerase I prevents transcription-replication conflicts at transcription termination sites. Mol Cell Oncol 2020; 8:1843951. [PMID: 33553603 PMCID: PMC7849740 DOI: 10.1080/23723556.2020.1843951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops, we mapped RNA:DNA hybrids, markers of replication fork stalling and DNA double-strand breaks along the human genome. This analysis indicates that transient replication fork pausing occurs at the transcription termination sites of highly expressed genes enriched in R-loops and prevents head-on conflicts with transcription, in a topoisomerase I-dependent manner.
Collapse
Affiliation(s)
- Yaqun Liu
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Montpellier, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France
| |
Collapse
|
39
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
40
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers (Basel) 2020; 12:E2098. [PMID: 32731592 PMCID: PMC7463878 DOI: 10.3390/cancers12082098] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-eradicating mechanisms such as apoptosis. A detailed understanding of DNA damage induction and the DDR has greatly improved our knowledge of the classical DNA damage-inducing therapies, radiotherapy and cytotoxic chemotherapy, and has paved the way for rational improvement of these treatments. Moreover, compounds targeting specific DDR proteins, selectively impairing DNA damage repair in cancer cells, form a promising novel therapy class that is now entering the clinic. In this review, we give an overview of the current state and ongoing developments, and discuss potential avenues for improvement for DNA damage-inducing therapies, with a central focus on the role of the DDR in therapy response, toxicity and resistance. Furthermore, we describe the relevance of using combination regimens containing DNA damage-inducing therapies and how they can be utilized to potentiate other anticancer strategies such as immunotherapy.
Collapse
Affiliation(s)
- Thom G. A. Reuvers
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| |
Collapse
|
42
|
DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42764-020-00017-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA DNA double-strand break (DSB) is considered the most critical DNA lesion because it causes cell death and severe mutations if it is not repaired or repaired incorrectly. Accumulating evidence has shown that the majority of DSBs are repaired by DNA non-homologous end joining (NHEJ), the first utilized repair pathway in human cells. In contrast, the repair pathway is sometimes diverted into using homologous recombination (HR), which has increased precision under specific circumstances: e.g., when DSBs are generated at transcriptionally active loci or are not readily repaired due to the complexity of damage at the DSB ends or due to highly compacted chromatin. DSB end resection (resection) is considered the most critical turning point for directing repair towards HR. After resection, the HR process is finalized by RAD51 loading and recombination. Thus, understanding the process of resection is critically important to understand the regulation of the choice of DSB repair pathway. In addition, resection is also an important factor influencing DNA damage signaling because unresected ends preferentially activate ATM, whereas longer resected ends activate ATR. Thus, DSB end resection is a key relay point that determines the repair pathway and the signal balance. In this review, we summarize the mechanism underlying DSB end resection and further discuss how it is involved in cancer therapy.
Collapse
|
43
|
Hou G, Deng J, You X, Chen J, Jiang Y, Qian T, Bi Y, Song B, Xu Y, Yang X. Mining topoisomerase isoforms in gastric cancer. Gene 2020; 754:144859. [PMID: 32535049 DOI: 10.1016/j.gene.2020.144859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases essentially remove topological strains generated during DNA replication, transcription, DNA repair, and other cytogenetic processes. However, distinct expression level and prognostic significance of individual topoisomerase isoforms in gastric cancer (GC) remain largely unexplored. In this study, we utilized Oncomine and Kaplan-Meier plotter database to detect the mRNA expression level of individual topoisomerase isoforms as well as assess their prognostic significance in GC patients. With the exception of TOP3B and TOP2B, levels of all topoisomerase isoforms were found to be elevated in GC patients when compared to the normal tissues. Elevated expression of TOP1 and TOP1MT was relevant to longer overall survival (OS) in GC and gastric intestinal type adenocarcinoma (GITA) patients, but not in diffuse gastric adenocarcinoma (DFA) patients. Increased expression of TOP2A and TOP2B was related to better OS in GC, as well as in GITA and DFA patients. In contrast, increased expression TOP3A and TOP3B was associated with shorter OS in GC, as well as in GITA and DFA patients. We also applied the Tumor IMmune Estimation Resource (TIMER) tool to assess the correlations between distinct topoisomerase isoforms and the infiltrating immune cell landscape. Furthermore, we found that down-regulating the expression of TOP3A by shRNA significantly inhibited the proliferation and colony formation in GC cells compared to control shRNA treated cells. Thus our study lays the framework for utilizing topoisomerases in better understanding the complexity and heterogeneity of GC and for developing strategies for novel customized therapy in GC patients.
Collapse
Affiliation(s)
- Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jingjing Deng
- Department of Respiratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin You
- The First Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yiming Jiang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Tingting Qian
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yanyu Bi
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binbin Song
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xinmei Yang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
44
|
Mei C, Lei L, Tan LM, Xu XJ, He BM, Luo C, Yin JY, Li X, Zhang W, Zhou HH, Liu ZQ. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmacother 2020; 125:109875. [DOI: 10.1016/j.biopha.2020.109875] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
|
45
|
Feng X, Wu X, Wu Y, Zhao Z, Xiang C, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of tyrosyl-DNA phosphodiesterases in cell tolerance to carnosol-induced DNA damage. Cell Biol Int 2020; 44:1640-1650. [PMID: 32301547 DOI: 10.1002/cbin.11357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 02/05/2023]
Abstract
Carnosol is a natural compound with pharmacological action due to its anti-cancer properties. However, the precise mechanism for its anti-carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double-strand breaks (DSBs). We also found that cells lacking tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1-DNA cleavage complex (TOP1cc) and TOP2-DNA cleavage complex (TOP2cc). When comparing the accumulation of γ-H2AX foci and the number of chromosomal aberrations (CAs) with wild-type (WT) cells, the susceptivity of the TDP1-/- and TDP2-/- cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti-cancer effect of carnosol.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Xiang C, Wu X, Zhao Z, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Nonhomologous end joining and homologous recombination involved in luteolin-induced DNA damage in DT40 cells. Toxicol In Vitro 2020; 65:104825. [PMID: 32169435 DOI: 10.1016/j.tiv.2020.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been shown to have anticancer activity in many types of cancer cell lines. The anticancer capacity of luteolin may be related to its ability to induce DNA double-strand breaks (DSBs). Here, we used DT40 cells to determine whether nonhomologous end joining (NHEJ) and homologous recombination (HR) are involved in the repair mechanism of luteolin-induced DNA damage. Cells defective in Ku70 (an enzyme associated with NHEJ) or Rad54 (an enzyme essential for HR) were hypersensitive and presented more apoptosis in response to luteolin. Moreover, the sensitivity and apoptosis of Ku70-/- and Rad54-/- cells were associated with increased DNA damage when the numbers of γ-H2AX foci and chromosomal aberrations (CAs) were compared with those from WT cells. Additionally, after treatment with luteolin, Ku70-/- cells presented more Top2 covalent cleavage complexes (Top2cc). These results indicated that luteolin induced DSBs in DT40 cells and demonstrated that both NHEJ and HR participated in the repair of luteolin-induced DSBs, which might be related to the inhibition of topoisomerases. These results imply that simultaneous inhibition of NHEJ and HR with luteolin treatment would provide a powerful protocol in cancer chemotherapy.
Collapse
Affiliation(s)
- Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Liu J, Geng G, Liang G, Wang L, Luo K, Yuan J, Zhao S. A novel topoisomerase I inhibitor DIA-001 induces DNA damage mediated cell cycle arrest and apoptosis in cancer cell. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:89. [PMID: 32175382 DOI: 10.21037/atm.2019.12.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background DNA topoisomerase enzyme plays an essential role in controlling the DNA topology structure by binding to DNA and cutting the phosphate backbone of either one or both of the DNA strands. Here, we have identified a small molecule inhibitor, DIA-001, that directly binds to Topoisomerase 1 (Topo I) and promotes the Topo I-DNA adducts. Methods In this study, we investigated the antitumor effects of DIA-001 using MTS assay and colony formation. We examined cell cycle of tumor cells with DIA-001 treatment in vitro by flow cytometry. And we investigated DNA damage and cell cycle marker protein after treatment with DIA-001 at different concentration and time point by western blot. Immunofluorescence was performance to detect the nuclear foci. The effects of DIA-001 on Topo I and Topo II activities were examined by DNA relaxation assays. Results We demonstrate that DIA-001 inhibit DNA replication and arrest cell cycle progression at the G2/M phase by directly binds to Topo I and promotes the Topo I-DNA adducts. In addition, DIA-001 can activate the DNA damage response signaling cascade, resulting in apoptosis in treated cells. Conclusions Our findings show a novel compound for treatment of cancer cells with the potential as a chemotherapy candidate that is less toxic to normal cells.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guohe Geng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ling Wang
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
48
|
Mull AB, Sharma K, Yu JL, Hsueh K, Moore AM, Fox IK. Surgical Upper Extremity Infections in Immunosuppressed Patients: A Comparative Analysis With Diagnosis and Treatment Recommendations for Hand Surgeons. Hand (N Y) 2020; 15:45-53. [PMID: 30035635 PMCID: PMC6966281 DOI: 10.1177/1558944718789410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Immunosuppression is encountered in patients with oncologic, transplant, and autoimmune disorders. The purpose of this study is to provide guidance for physicians treating surgical hand and upper extremity (UE) infections in immunosuppressed (IS) patients. Methods: We retrospectively reviewed our database of patients presenting with UE infections over 3 years. IS patients were matched randomly to non-IS patients. Patient background, infection presentation, surgical evaluation, and microbiology variables were recorded. Infection variables included mechanism, location, and type. Outcomes included inpatient length of stay (LOS) and need for repeat drainage. Results: We identified 35 IS and 35 non-IS out of 409 UE infection patients. Patients most commonly had a hematologic malignancy (34%) as their IS class, and the most frequent immunosuppressive medication was glucocorticoids (57%). IS patients were more likely to be older and less likely to have a history of drug abuse or hepatitis C virus infections. IS infections were more likely to have idiopathic mechanisms, more likely to involve deeper anatomy such as joints, bone, tendon sheath, or muscle/fascia, and less likely to present with leukocytosis. IS cultures more commonly exhibited atypical Mycoplasma or fungus. There was no difference between IS and non-IS patients regarding LOS or recurrent drainage. Conclusions: Mechanism and white blood cell count are less reliable markers of infection severity in IS patients. Physicians treating infections in IS patients should maintain a higher suspicion for deeper involved anatomy and atypical microbiology. Nonetheless, with careful inpatient management and closer surveillance, outcomes in IS patients can approach that of non-IS patients.
Collapse
Affiliation(s)
- Aaron B. Mull
- Division of Plastic and Reconstructive
Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ketan Sharma
- Division of Plastic and Reconstructive
Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny L. Yu
- Division of Plastic and Reconstructive
Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Hsueh
- Division of Infectious Diseases,
Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M. Moore
- Division of Plastic and Reconstructive
Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ida K. Fox
- Division of Plastic and Reconstructive
Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
49
|
Lian C, Cao S, Zeng W, Li Y, Su J, Li J, Zhao S, Wu L, Tao J, Zhou J, Chen X, Peng C. RJT-101, a novel camptothecin derivative, is highly effective in the treatment of melanoma through DNA damage by targeting topoisomerase 1. Biochem Pharmacol 2020; 171:113716. [DOI: 10.1016/j.bcp.2019.113716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
|
50
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|