1
|
Zucca FA, Capucciati A, Bellei C, Sarna M, Sarna T, Monzani E, Casella L, Zecca L. Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life 2023; 75:55-65. [PMID: 35689524 PMCID: PMC10084223 DOI: 10.1002/iub.2654] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Neuromelanins are compounds accumulating in neurons of human and animal brain during aging, with neurons of substantia nigra and locus coeruleus having the highest levels of neuromelanins. These compounds have melanic, lipid, peptide, and inorganic components and are contained inside special autolysosomes. Neuromelanins can participate in neuroprotective or toxic processes occurring in Parkinson's disease according to cellular environment. Their synthesis depends on the concentration of cytosolic catechols and is a protective process since it prevents the toxic accumulation of catechols-derived reactive compounds. Neuromelanins can be neuroprotective also by binding reactive/toxic metals to produce stable and non-toxic complexes. Extraneuronal neuromelanin released by dying dopamine neurons in Parkinson's disease activates microglia which generate reactive oxygen species, reactive nitrogen species, and proinflammatory molecules, thus producing still neuroinflammation and neuronal death. Synthetic neuromelanins have been prepared with melanic, protein structure, and metal content closely mimicking the natural brain pigment, and these models are also able to activate microglia. Neuromelanins have different structure, synthesis, cellular/subcellular distribution, and role than melanins of hair, skin, and other tissues. The main common aspect between brain neuromelanin and peripheral melanin is the presence of eumelanin and/or pheomelanin moieties in their structure.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | | | - Chiara Bellei
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| |
Collapse
|
2
|
Yin Z, Peng J, Qiao Z, Zhang Y, Wei N. A fluorogenic probe for TRPA1 channel imaging based on a molecular rotation mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for selectively visualizing the TRPA1 channel and rapidly screening its regulators.
Collapse
Affiliation(s)
- Zhengji Yin
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Junli Peng
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Zhen Qiao
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Yanru Zhang
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Ningning Wei
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
3
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
4
|
Capucciati A, Zucca FA, Monzani E, Zecca L, Casella L, Hofer T. Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants (Basel) 2021; 10:antiox10060824. [PMID: 34064062 PMCID: PMC8224073 DOI: 10.3390/antiox10060824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Neuromelanin (NM) accumulates in catecholamine long-lived brain neurons that are lost in neurodegenerative diseases. NM is a complex substance made of melanic, peptide and lipid components. NM formation is a natural protective process since toxic endogenous metabolites are removed during its formation and as it binds excess metals and xenobiotics. However, disturbances of NM synthesis and function could be toxic. Here, we review recent knowledge on NM formation, toxic mechanisms involving NM, go over NM binding substances and suggest experimental models that can help identifying xenobiotic modulators of NM formation or function. Given the high likelihood of a central NM role in age-related human neurodegenerative diseases such as Parkinson’s and Alzheimer’s, resembling such diseases using animal models that do not form NM to a high degree, e.g., mice or rats, may not be optimal. Rather, use of animal models (i.e., sheep and goats) that better resemble human brain aging in terms of NM formation, as well as using human NM forming stem cellbased in vitro (e.g., mid-brain organoids) models can be more suitable. Toxicants could also be identified during chemical synthesis of NM in the test tube.
Collapse
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Fabio A. Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Luigi Casella
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, N-0213 Oslo, Norway
- Correspondence: ; Tel.: +47-21076671
| |
Collapse
|
5
|
Fedorowicz J, Wierzbicka M, Cebrat M, Wiśniewska P, Piątek R, Zalewska-Piątek B, Szewczuk Z, Sączewski J. Application of Safirinium N-Hydroxysuccinimide Esters to Derivatization of Peptides for High-Resolution Mass Spectrometry, Tandem Mass Spectrometry, and Fluorescent Labeling of Bacterial Cells. Int J Mol Sci 2020; 21:ijms21249643. [PMID: 33348897 PMCID: PMC7767236 DOI: 10.3390/ijms21249643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Mass spectrometry methods are commonly used in the identification of peptides and biomarkers. Due to a relatively low abundance of proteins in biological samples, there is a need for the development of novel derivatization methods that would improve MS detection limits. Hence, novel fluorescent N–hydroxysuccinimide esters of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates (Safirinium P dyes) have been synthesized. The obtained compounds, which incorporate quaternary ammonium salt moieties, easily react with aliphatic amine groups of peptides, both in solution and on the solid support; thus, they can be applied for derivatization as ionization enhancers. Safirinium tagging experiments with ubiquitin hydrolysate revealed that the sequence coverage level was high (ca. 80%), and intensities of signals were enhanced up to 8-fold, which proves the applicability of the proposed tags in the bottom–up approach. The obtained results confirmed that the novel compounds enable the detection of trace amounts of peptides, and fixed positive charge within the tags results in high ionization efficiency. Moreover, Safirinium NHS esters have been utilized as imaging agents for fluorescent labeling and the microscopic visualization of living cells such as E. coli Top10 bacterial strain.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-349-1957
| | - Magdalena Wierzbicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.C.); (Z.S.)
| | - Marek Cebrat
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.C.); (Z.S.)
| | - Paulina Wiśniewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (P.W.); (J.S.)
| | - Rafał Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (B.Z.-P.)
| | - Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (B.Z.-P.)
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.C.); (Z.S.)
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (P.W.); (J.S.)
| |
Collapse
|
6
|
Qiao Z, Qi H, Zhang H, Zhou Q, Wei N, Zhang Y, Wang K. Visualizing TRPA1 in the Plasma Membrane for Rapidly Screening Optical Control Agonists via a Photochromic Ligand Based Fluorescent Probe. Anal Chem 2020; 92:1934-1939. [PMID: 31855414 DOI: 10.1021/acs.analchem.9b04193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescent probes have been used as effective methods for profiling proteins in biological systems because of their high selectivity, sensitivity, and temporal-spatial resolution. A specific fluorescent probe for understanding the function of the transient receptor potential ankyrin 1 (TRPA1) channel that is closely related with various diseases like persistent pain, respiratory, and chronic itch syndromes, however, is still lacking. Here, we report a "turn-on" fluorescent probe (A1CA) for visualizing TRPA1 channels in the plasma membrane of live cells based on a photochromic ligand derived from 4-(phenylazo)benzenamine. Evaluating the specificity and sensitivity of A1CA by electrophysiology and confocal imaging showed that the A1CA probe displays higher affinity and selectivity to TRPA1 channel versus all other ion channels including TRPV1, TRPV3, Nav1.4, Nav1.5, and hERG. Based on the supporting evidence, A1CA has great potential as a molecular imaging probe for high-throughput screening of novel TRPA1 agonists.
Collapse
Affiliation(s)
- Zhen Qiao
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Hang Qi
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Hongyi Zhang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Qiqi Zhou
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Ningning Wei
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Yanru Zhang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - KeWei Wang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| |
Collapse
|
7
|
A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biol 2019; 28:101377. [PMID: 31760358 PMCID: PMC6880099 DOI: 10.1016/j.redox.2019.101377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
Recent findings suggest that dopamine oxidation contributes to the development of Parkinson's disease (PD); however, the mechanistic details remain elusive. Here, we compare 6-hydroxydopamine (6-OHDA), a product of dopamine oxidation that commonly induces dopaminergic neurodegeneration in laboratory animals, with a synthetic alkyne-functionalized 6-OHDA variant. This synthetic molecule provides insights into the reactivity of quinone and neuromelanin formation. Employing Huisgen cycloaddition chemistry (or “click chemistry”) and fluorescence imaging, we found that reactive 6-OHDA p-quinones cause widespread protein modification in isolated proteins, lysates and cells. We identified cysteine thiols as the target site and investigated the impact of proteome modification by quinones on cell viability. Mass spectrometry following cycloaddition chemistry produced a large number of 6-OHDA modified targets including proteins involved in redox regulation. Functional in vitro assays demonstrated that 6-OHDA inactivates protein disulfide isomerase (PDI), which is a central player in protein folding and redox homeostasis. Our study links dopamine oxidation to protein modification and protein folding in dopaminergic neurons and the PD model. Chemical modification of 6-OHDA increases stability of 6-OHDA p-quinone by preventing neuromelanin formation. Modified 6-OHDA enables visualization of thiol-dependent protein modification by p-quinone. Wide-spread proteome modification by 6-OHDA p-quinone impairs neuroblastoma viability. 6-OHDA p-quinone inactivates PDI linking dopamine oxidation to protein unfolding.
Collapse
|