1
|
Komoto Y, Ohshiro T, Notsu Y, Taniguchi M. Single-molecule detection of modified amino acid regulating transcriptional activity. RSC Adv 2024; 14:31740-31744. [PMID: 39376514 PMCID: PMC11457157 DOI: 10.1039/d4ra05488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Acetylation of lysine, a component of histones, regulates transcriptional activity. Simple detection methods for acetyl lysine are essential for early diagnosis of diseases and understanding of the physiological effects. We have detected and recognized acetyl lysine at the single-molecule level by combining MCBJ measurement and machine learning.
Collapse
Affiliation(s)
- Yuki Komoto
- SANKEN, Osaka University 8-1, Mihogaoka Ibaraki Osaka 567-0047 Japan
- Artificial Intelligence Research Center, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Takahito Ohshiro
- SANKEN, Osaka University 8-1, Mihogaoka Ibaraki Osaka 567-0047 Japan
- Artificial Intelligence Research Center, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Yuno Notsu
- Kakogawa Higashi High School 232-2 Kakogawachoawazu Kakogawa Hyogo 675-0039 Japan
| | | |
Collapse
|
2
|
Li P, Bera S, Kumar-Saxena S, Pecht I, Sheves M, Cahen D, Selzer Y. Electron transport through two interacting channels in Azurin-based solid-state junctions. Proc Natl Acad Sci U S A 2024; 121:e2405156121. [PMID: 39110736 PMCID: PMC11331140 DOI: 10.1073/pnas.2405156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
Collapse
Affiliation(s)
- Ping’an Li
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Shailendra Kumar-Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur603203, Tamil Nadu, India
| | - Israel Pecht
- Department of Regenerative Biology and Immunology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - David Cahen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Yoram Selzer
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
3
|
Hurtado-Gallego J, van der Poel S, Blaschke M, Gallego A, Hsu C, López-Nebreda R, Mayor M, Pauly F, Agraït N, van der Zant HSJ. Benchmarking break-junction techniques: electric and thermoelectric characterization of naphthalenophanes. NANOSCALE 2024; 16:10751-10759. [PMID: 38747099 PMCID: PMC11154865 DOI: 10.1039/d4nr00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whilst keeping track of the junction's conductance. Here, we compare results from mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods, while characterizing conductance properties of the same novel mechanosensitive para- and meta-connected naphtalenophane compounds. In addition, thermopower measurements are carried out for both compounds using the STM break junction (STM-BJ) technique. For the conductance experiments, the same data processing using a clustering analysis is performed. We obtain to a large extent similar results for both methods, although values of conductance and stretching lengths for the STM-BJ technique are slightly larger in comparison with the MCBJ. STM-BJ thermopower experiments show similar Seebeck coefficients for both compounds. An increase in the Seebeck coefficient is revealed, whilst the conductance decreases, after which it saturates at around 10 μV K-1. This phenomenon is studied theoretically using a tight binding model. It shows that changes of molecule-electrode electronic couplings combined with shifts of the resonance energies explain the correlated behavior of conductance and Seebeck coefficient.
Collapse
Affiliation(s)
- Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Sebastiaan van der Poel
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | - Matthias Blaschke
- Institute of Physics and Center for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany.
| | - Almudena Gallego
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Chunwei Hsu
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | - Rubén López-Nebreda
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
- Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China
| | - Fabian Pauly
- Institute of Physics and Center for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159 Augsburg, Germany.
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales 'Nicolás Cabrera' (INC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| |
Collapse
|
4
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Salthouse R, Hurtado-Gallego J, Grace IM, Davidson R, Alshammari O, Agraït N, Lambert CJ, Bryce MR. Electronic Conductance and Thermopower of Cross-Conjugated and Skipped-Conjugated Molecules in Single-Molecule Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13751-13758. [PMID: 37528901 PMCID: PMC10389811 DOI: 10.1021/acs.jpcc.3c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2023] [Indexed: 08/03/2023]
Abstract
We report a combined experimental and theoretical study of a series of thiomethyl (SMe) anchored cross-conjugated molecules featuring an acyclic central bridging ketone and their analogous skipped-conjugated alcohol derivatives. Studies of these molecules in a gold|single-molecule|gold junction using scanning tunneling microscopy-break junction techniques reveal a similar conductance (G) value for both the cross-conjugated molecules and their skipped-conjugated partners. Theoretical studies based on density functional theory of the molecules in their optimum geometries in the junction reveal the reason for this similarity in conductance, as the predicted conductance for the alcohol series of compounds varies more with the tilt angle. Thermopower measurements reveal a higher Seebeck coefficient (S) for the cross-conjugated ketone molecules relative to the alcohol derivatives, with a particularly high S for the biphenyl derivative 3a (-15.6 μV/K), an increase of threefold compared to its alcohol analog. The predicted behavior of the quantum interference (QI) in this series of cross-conjugated molecules is found to be constructive, though the appearance of a destructive QI feature for 3a is due to the degeneracy of the HOMO orbital and may explain the enhancement of the value of S for this molecule.
Collapse
Affiliation(s)
| | - Juan Hurtado-Gallego
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Iain M. Grace
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Ross Davidson
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Ohud Alshammari
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Nicolás Agraït
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia
de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, Madrid E-28049, Spain
| | - Colin J. Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
7
|
Sikri G, Sawhney RS. Computational evaluation of transport parameters and logic circuit designing of L-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes. J Mol Model 2023; 29:115. [PMID: 36973447 DOI: 10.1007/s00894-023-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023]
Abstract
The integrants of proteins, i.e., amino acids, have grossed exceptional recognition for their applications towards designing imminent switching devices. Among 20 amino acids, L-Lysine (i.e., positively charged) has the highest number of CH2 chains, and such chains affect the rectification ratio in several biomolecules. Towards molecular rectification, we investigate the transport parameters of L-Lysine in conjunction with five different coinage metal electrodes, i.e., Au, Ag, Cu, Pt and Pd to form five distinct devices. We deputize the NEGF-DFT formulism for computing conductance, frontier molecular orbitals, current-voltage, and molecular projected self-Hamiltonian calculations using a self-consistent function. We focus on the most widely used electron exchange correlation combination, i.e., the PBE version of GGA with DZDP basis set. The molecular devices under inquisition exhibit phenomenal rectification ratios (RR) in conjunction with negative differential resistance (NDR) regimes. The nominated molecular device offers a substantial rectification ratio of 45.6 with platinum electrodes and a prominent peak to valley current ratio of 1.78 with copper electrodes. We deduce from these findings that L-Lysine based molecular devices would implicit in future bio-nanoelectronic devices. The OR and AND logic gates are also proposed hinged on highest rectification ratio of L-Lysine-based devices.
Collapse
Affiliation(s)
- Gaurav Sikri
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India.
| | | |
Collapse
|
8
|
Bai X, Li P, Peng W, Chen N, Lin JL, Li Y. Ionogel-Electrode for the Study of Protein Tunnel Junctions under Physiologically Relevant Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300663. [PMID: 36965118 DOI: 10.1002/adma.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions. It is demonstrated that the solvent reorganization energy plays an important role in the electron-hopping process and experimentally shown that it requires ≈100 meV for electron hopping through one heme group inside a hydrated protein molecule connected between two electrodes.
Collapse
Affiliation(s)
- Xiyue Bai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Pengfei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
9
|
Hurtado-Gallego J, Sangtarash S, Davidson R, Rincón-García L, Daaoub A, Rubio-Bollinger G, Lambert CJ, Oganesyan VS, Bryce MR, Agraït N, Sadeghi H. Thermoelectric Enhancement in Single Organic Radical Molecules. NANO LETTERS 2022; 22:948-953. [PMID: 35073099 DOI: 10.1021/acs.nanolett.1c03698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.
Collapse
Affiliation(s)
- Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Ross Davidson
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Laura Rincón-García
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Colin J Lambert
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Vasily S Oganesyan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Martin R Bryce
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| |
Collapse
|
10
|
Sequence modulation of tunneling barrier and charge transport across histidine doped oligo-alanine molecular junctions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Fu T, Frommer K, Nuckolls C, Venkataraman L. Single-Molecule Junction Formation in Break-Junction Measurements. J Phys Chem Lett 2021; 12:10802-10807. [PMID: 34723548 DOI: 10.1021/acs.jpclett.1c03160] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The scanning tunneling microscope-based break-junction (STM-BJ) technique is the most common method used to study the electronic properties of single-molecule junctions. It relies on repeatedly forming and rupturing a Au contact in an environment of the target molecules. The probability of junction formation is typically very high (∼70-95%), prompting questions relating to how the nanoscale structure of the Au electrode before the metal point contact ruptures alters junction formation. Here we analyze conductance traces measured with the STM-BJ setup by combining correlation analysis and multiple machine learning tools, including gradient-boosted trees and neural networks. We show that two key features describing the Au-Au contact prior to rupture determine the extent of contact relaxation (snapback) and the probability of junction formation. Importantly, our data strongly indicate that molecular junctions are formed prior to the rupture of the Au-Au contact, explaining the high probability of junction formation observed in room-temperature solution measurements.
Collapse
Affiliation(s)
- Tianren Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kathleen Frommer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Molecular electronics behaviour of L-aspartic acid using symmetrical metal electrodes. J Mol Model 2021; 27:335. [PMID: 34718873 DOI: 10.1007/s00894-021-04936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Protein-based electronics is one of the growing areas of bio-nanoelectronics, where novel electronic devices possessing distinctive properties are being fabricated using specific proteins. Furthermore, if the bio-molecule is analysed amidst different electrodes, intriguing properties are elucidated. This research article investigates the electron transport properties of L-aspartic acid (i.e. L-amino acid) bound to symmetrical electrodes of gold, silver, copper, platinum and palladium employing NEGF-DFT approach using self-consistent function. The theoretical work function of different electrodes is calculated using local density approximation and generalized gradient approximation approach. The calculated work function correlates well with the hole tunneling barrier and conductance of the molecular device, which further authenticate the coupling strength between molecule and electrode. Molecule under consideration also exhibits negative differential resistance region and rectification ratio with all the different electrodes, due to its asymmetrical structure. The molecular device using platinum electrodes exhibits the highest peak to valley ratio of 1.38 and rectification ratio of 3.20, at finite bias. The switching characteristics of different molecular device are justified with detailed transmission spectra and MPSH. These results indicate that L-aspartic acid and similar biomolecule can be vital to the growth of Proteotronics.
Collapse
|
13
|
The Role of Metal Ions in the Electron Transport through Azurin-Based Junctions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We studied the coherent electron transport through metal–protein–metal junctions based on a blue copper azurin, in which the copper ion was replaced by three different metal ions (Co, Ni and Zn). Our results show that neither the protein structure nor the transmission at the Fermi level change significantly upon metal replacement. The discrepancy with previous experimental observations suggests that the transport mechanism taking place in these types of junctions is probably not fully coherent.
Collapse
|
14
|
Lapham P, Vilà-Nadal L, Cronin L, Georgiev VP. Influence of the Contact Geometry and Counterions on the Current Flow and Charge Transfer in Polyoxometalate Molecular Junctions: A Density Functional Theory Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:3599-3610. [PMID: 33633816 PMCID: PMC7899180 DOI: 10.1021/acs.jpcc.0c11038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Indexed: 05/08/2023]
Abstract
Polyoxometalates (POMs) are promising candidates for molecular electronic applications because (1) they are inorganic molecules, which have better CMOS compatibility compared to organic molecules; (2) they are easily synthesized in a one-pot reaction from metal oxides (MO x ) (where the metal M can be, e.g., W, V, or Mo, and x is an integer between 4 and 7); (3) POMs can self-assemble to form various shapes and configurations, and thus the chemical synthesis can be tailored for specific device performance; and (4) they are redox-active with multiple states that have a very low voltage switching between polarized states. However, a deep understanding is required if we are to make commercial molecular devices a reality. Simulation and modeling are the most time efficient and cost-effective methods to evaluate a potential device performance. Here, we use density functional theory in combination with nonequilibrium Green's function to study the transport properties of [W18O54(SO3)2]4-, a POM cluster, in a variety of molecular junction configurations. Our calculations reveal that the transport profile not only is linked to the electronic structure of the molecule but also is influenced by contact geometry and presence of ions. More specifically, the contact geometry and the number of bonds between the POM and the electrodes determine the current flow. Hence, strong and reproducible contact between the leads and the molecule is mandatory to establish a reliable fabrication process. Moreover, although often ignored, our simulations show that the charge balancing counterions activate the conductance channels intrinsic to the molecule, leading to a dramatic increase in the computed current at low bias. Therefore, the role of these counterions cannot be ignored when molecular based devices are fabricated. In summary, this work shows that the current transport in POM junctions is determined by not only the contact geometry between the molecule and the electrode but also the presence of ions around the molecule. This significantly impacts the transport properties in such nanoscale molecular electronic devices.
Collapse
Affiliation(s)
- Paul Lapham
- Device Modelling Group, James Watt School of
Engineering, The University of Glasgow, G12 8QQ Glasgow,
U.K.
| | - Laia Vilà-Nadal
- School of Chemistry, The University of
Glasgow, G12 8QQ Glasgow, U.K.
| | - Leroy Cronin
- School of Chemistry, The University of
Glasgow, G12 8QQ Glasgow, U.K.
| | - Vihar P. Georgiev
- Device Modelling Group, James Watt School of
Engineering, The University of Glasgow, G12 8QQ Glasgow,
U.K.
- (V.P.G.)
| |
Collapse
|
15
|
Stefani D, Guo C, Ornago L, Cabosart D, El Abbassi M, Sheves M, Cahen D, van der Zant HSJ. Conformation-dependent charge transport through short peptides. NANOSCALE 2021; 13:3002-3009. [PMID: 33508063 DOI: 10.1039/d0nr08556a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on charge transport across single short peptides using the Mechanically Controlled Break Junction (MCBJ) method. We record thousands of electron transport events across single-molecule junctions and with an unsupervised machine learning algorithm, we identify several classes of traces with multifarious conductance values that may correspond to different peptide conformations. Data analysis shows that very short peptides, which are more rigid, show conductance plateaus at low conductance values of about 10-3G0 and below, with G0 being the conductance quantum, whereas slightly longer, more flexible peptides also show plateaus at higher values. Fully stretched peptide chains exhibit conductance values that are of the same order as that of alkane chains of similar length. The measurements show that in the case of short peptides, different compositions and molecular lengths offer a wide range of junction conformations. Such information is crucial to understand mechanism(s) of charge transport in and across peptide-based biomolecules.
Collapse
Affiliation(s)
- Davide Stefani
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Leary E, Kastlunger G, Limburg B, Rincón-García L, Hurtado-Gallego J, González MT, Bollinger GR, Agrait N, Higgins SJ, Anderson HL, Stadler R, Nichols RJ. Long-lived charged states of single porphyrin-tape junctions under ambient conditions. NANOSCALE HORIZONS 2021; 6:49-58. [PMID: 33107543 DOI: 10.1039/d0nh00415d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to control the charge state of individual molecules wired in two-terminal single-molecule junctions is a key challenge in molecular electronics, particularly in relation to the development of molecular memory and other computational componentry. Here we demonstrate that single porphyrin molecular junctions can be reversibly charged and discharged at elevated biases under ambient conditions due to the presence of a localised molecular eigenstate close to the Fermi edge of the electrodes. In particular, we can observe long-lived charge-states with lifetimes upwards of 1-10 seconds after returning to low bias and large changes in conductance, in excess of 100-fold at low bias. Our theoretical analysis finds charge-state lifetimes within the same time range as the experiments. The ambient operation demonstrates that special conditions such as low temperatures or ultra-high vacuum are not essential to observe hysteresis and stable charged molecular junctions.
Collapse
Affiliation(s)
- Edmund Leary
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sršan L, Ziegler T. Nonconsensus motif directed chemical synthesis of glutamine-based glycopeptides. J Pept Sci 2020; 26:e3285. [PMID: 32902095 DOI: 10.1002/psc.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022]
Abstract
Besides the most common sequon of amino acids found in glycopeptides, namely, N-X-S/T, where X can be any amino acid except proline, a small number of nonconsensus motifs have been found in both eukaryotic and prokaryotic organisms, for example, Q-G-T. Because of the importance of glycopeptides in biotechnology and pharmacy, an adequate synthetic approach to these structures is highly important. In this manuscript, we report the efficient chemical batch synthesis of new glutamine-based glycopeptide structures, which can be used to represent cell surface elements in further biological investigations.
Collapse
Affiliation(s)
- Laura Sršan
- University of Tübingen, Institute of Organic Chemistry, Tübingen, 72076, Germany
| | - Thomas Ziegler
- University of Tübingen, Institute of Organic Chemistry, Tübingen, 72076, Germany
| |
Collapse
|
18
|
Grace IM, Olsen G, Hurtado-Gallego J, Rincón-García L, Rubio-Bollinger G, Bryce MR, Agraït N, Lambert CJ. Connectivity dependent thermopower of bridged biphenyl molecules in single-molecule junctions. NANOSCALE 2020; 12:14682-14688. [PMID: 32618309 DOI: 10.1039/d0nr04001k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report measurements on gold|single-molecule|gold junctions, using a modified scanning tunneling microscope-break junction (STM-BJ) technique, of the Seebeck coefficient and electrical conductance of a series of bridged biphenyl molecules, with meta connectivities to pyridyl anchor groups. These data are compared with a previously reported study of para-connected analogues. In agreement with a tight binding model, the electrical conductance of the meta series is relatively low and is sensitive to the nature of the bridging groups, whereas in the para case the conductance is higher and relatively insensitive to the presence of the bridging groups. This difference in sensitivity arises from the presence of destructive quantum interference in the π system of the unbridged aromatic core, which is alleviated to different degrees by the presence of bridging groups. More precisely, the Seebeck coefficient of meta-connected molecules was found to vary between -6.1 μV K-1 and -14.1 μV K-1, whereas that of the para-connected molecules varied from -5.5 μV K-1 and -9.0 μV K-1.
Collapse
Affiliation(s)
- Iain M Grace
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | | | | | | | | | | | |
Collapse
|