1
|
Davaeil B, Saremipour A, Moosavi-Movahedi F, Asghari SM, Moosavi-Movahedi AA. Differential scanning calorimetric domain dissection for HSA upon interaction with Bortezomib: Unveiling the binding dynamics. Int J Biol Macromol 2024; 283:137728. [PMID: 39551302 DOI: 10.1016/j.ijbiomac.2024.137728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Human serum albumin (HSA), a crucial plasma protein, plays a significant role in drug interactions within the bloodstream, bearing considerable clinical relevance. Bortezomib (BTZ) is a potent anti-cancer drug for multiple myeloma (MM) and mantle cell lymphoma (MC). The mechanism of BTZ transfer in the blood remains undetermined. This study aims to investigate the binding of BTZ to HSA using the techniques of differential scanning calorimetry (DSC), circular dichroism (CD), fluorescence spectroscopy, and computational methods such as molecular docking and molecular dynamics simulations. This study presents the thermal dissection of domain I (DI) of HSA by subjecting it to a temperature elevation of 79.2 °C (2 °C above Tm of DI) using DSC, which provides new information on the thermal behavior of HSA domains. Furthermore, the deconvolution analysis of the HSA thermogram in the absence and presence of BTZ revealed that the drug binding site is located in DI and impacts DII. The interaction between BTZ and HSA with a binding affinity (Kb) of 7.744±0.2 ×105 M-1 influences protein dynamics and reduces HSA's thermal stability by almost 1 °C. This study is crucial for predicting the pharmacokinetics and pharmacodynamics of BTZ, aiding in developing safer and more effective treatments for MM and MC.
Collapse
Affiliation(s)
- Bagher Davaeil
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Anita Saremipour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
2
|
Chauhan C, Singh P, Muthu SA, Parvez S, Selvapandiyan A, Ahmad B. Plumbagin accelerates serum albumin's amyloid aggregation kinetics and generates fibril polymorphism by inducing non-native β-sheet structures. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141028. [PMID: 38849109 DOI: 10.1016/j.bbapap.2024.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The ligand-induced conformational switch of proteins has great significance in understanding the biophysics and biochemistry of their self-assembly. In this work, we have investigated the ability of plumbagin (PL), a hydroxynaphthoquinone compound found in the root of the medicinal plant Plumbago zeylanica, to modulate aggregation precursor state, aggregation kinetics and generate distinct fibril of human serum albumin (HSA). PL was found to moderately bind (binding constant Ka ∼ 10-4 M-1)) to domain-II of HSA in the stoichiometric ratio of 1:1. We found that PL-HSA complex aggregation was accelerated as compared to that of HSA aggregation and it may be through an independent pathway. We also detected that fibril produced in the presence of PL is wider in diameter, contains a higher amount of β-sheet (∼18%) and disordered (∼46%) structures, and is less stable. We concluded that the acceleration of aggregation reaction and generation of fibril polymorphism was mainly because of the higher extent of unfolding and high content of non-native β-sheet structure in the aggregation precursor state of PL-HSA complex. This study offers opportunities to explore the ability of ligand binding to modulate aggregation reactions and generate polymorphic protein fibrils.
Collapse
Affiliation(s)
- Chanchal Chauhan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Poonam Singh
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India
| | - Shivani A Muthu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | | | - Basir Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Verma R, Pyreddy S, Redmond CE, Qazi F, Khalid A, O'Brien-Simpson NM, Shukla R, Tomljenovic-Hanic S. Detection and identification of amino acids and proteins using their intrinsic fluorescence in the visible light spectrum. Anal Chim Acta 2023; 1282:341925. [PMID: 37923411 DOI: 10.1016/j.aca.2023.341925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The detection and identification of biomolecules are essential in the modern era of medical diagnostics. Several approaches have been established, but they have significant limitations such as laborious and time-consuming sample preparation, analysis, and the need to use external probes which provide adequate but not desired levels of accuracy and sensitivity. Herein, we have explored successfully a non-invasive technique to detect and identifybiomolecules such as amino acids and proteins by utilizing their intrinsic fluorescence. The developed confocal microscopy method revealed high and photostable emission counts of these biomolecules including amino acids (tryptophan, phenylalanine, tyrosine, proline, histidine, cysteine, aspartic acid, asparagine, isoleucine, lysine, glutamic acid, arginine) and proteins (HSA, BSA) when they are excited with a green laser. The fluorescence lifetime of the samples enabled the identification and distinction of known and blind samples of biomolecules from each other. The developed optical technique is straightforward, non-destructive and does not require laborious labeling to identify specific proteins, and may serve as the basis for the development of a device that would quickly and accurately identify proteins at an amino acid level. Therefore, this approach would open an avenue for precise detection in imaging and at the same time increases our understanding of chemical dynamics at the molecular level.
Collapse
Affiliation(s)
- Rajni Verma
- School of Physics, University of Melbourne, Parkville, 3010, Australia; National Creative Research Center for Spin Dynamics and SW Devices, Department of Material Sciences and Engineering, Seoul National University, Seoul 151-744, South Korea.
| | - Suneela Pyreddy
- Sir Ian Potter Biosensing Facility and Nanobiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia; Centre for Advanced Materials & Industrial Chemistry RMIT University, Melbourne, Victoria 3001, Australia
| | - Connagh E Redmond
- ACTV Research Group, Oral Health Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Farah Qazi
- School of Physics, University of Melbourne, Parkville, 3010, Australia
| | - Asma Khalid
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Oral Health Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ravi Shukla
- Sir Ian Potter Biosensing Facility and Nanobiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia; Centre for Advanced Materials & Industrial Chemistry RMIT University, Melbourne, Victoria 3001, Australia
| | | |
Collapse
|
4
|
Li X, Yan X, Yang D, Chen S, Yuan H. Probing the Interaction between Isoflucypram Fungicides and Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations. Int J Mol Sci 2023; 24:12521. [PMID: 37569896 PMCID: PMC10420152 DOI: 10.3390/ijms241512521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
To better understand the potential toxicity risks of isoflucypram in humans, The interaction between isoflucypram and HSA (human serum albumin) was studied through molecular docking, molecular dynamics simulations, ultraviolet-visible absorption, fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transform infrared spectroscopies, and circular dichroism spectroscopies. The interaction details were studied using the molecular docking method and molecular dynamics simulation method. The results revealed that the effect of isoflucypram on human serum albumin was mixed (static and dynamic) quenching. Additionally, we were able to obtain important information on the number of binding sites, binding constants, and binding distance. The interaction between isoflucypram and human serum albumin occurred mainly through hydrogen bonds and van der Waals forces. Spectroscopic results showed that isoflucypram caused conformational changes in HSA (human serum albumin), in which the α-helix was transformed into a β-turn, β-sheet, and random coil, causing the HSA structure to loosen. By providing new insights into the mechanism of binding between isoflucypram and human serum albumin, our study has important implications for assessing the potential toxicity risks associated with isoflucypram exposure.
Collapse
Affiliation(s)
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| | | | | | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| |
Collapse
|
5
|
Xu W, Ning Y, Cao S, Wu G, Sun H, Chai L, Wu S, Li J, Luo D. Insight into the interaction between tannin acid and bovine serum albumin from a spectroscopic and molecular docking perspective. RSC Adv 2023; 13:10592-10599. [PMID: 37025671 PMCID: PMC10071303 DOI: 10.1039/d3ra00375b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, the interaction mechanism of bovine serum albumin (BSA) with tannic acid (TA) was investigated by spectroscopic and computational approaches and further validated using circular dichroism (CD), differential scanning calorimetry (DSC) and molecular docking techniques. The fluorescence spectra showed that TA bound to BSA and underwent static quenching at a single binding site, which was consistent with the molecular docking results. And the fluorescence quenching of BSA by TA was dose-dependent. Thermodynamic analysis indicated that hydrophobic forces dominated the interaction of BSA with TA. The results of circular dichroism showed that the secondary structure of BSA was slightly changed after coupling with TA. Differential scanning calorimetry showed that the interaction between BSA and TA improved the stability of the BSA-TA complex, and the melting temperature increased to 86.67 °C and the enthalpy increased to 264.1 J g-1 when the ratio of TA to BSA was 1.2 : 1. Molecular docking techniques revealed specific amino acid binding sites for the BSA-TA complex with a docking energy of -12.9 kcal mol-1, which means the TA is non-covalently bound to the BSA active site.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Shiwan Cao
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Guanchen Wu
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Liwen Chai
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Shuping Wu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Jingyi Li
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| |
Collapse
|
6
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
7
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
8
|
Real-time monitoring of polymyxin B-sodium deoxycholate sulfate binding with immobilized human serum albumin by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Tang Q, Gu L, Zhou B, Shi J, Wu H, Zhu H, Xu Y, Zhang T. Establishment of a New Cryopreservation Solution for Chimeric Antigen Receptor T Cells. Biopreserv Biobank 2022; 20:567-574. [PMID: 35294840 DOI: 10.1089/bio.2021.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Preservation and transportation are essential for the clinical application of chimeric antigen receptor T (CAR-T) cells. This study aimed to optimize a cryopreservation solution for CAR-T cells and evaluate the antitumor efficiency of CAR-T cells using this optimized solution in vitro and in vivo. First, the stability of the cryopreservation solution for CAR-T infusion was detected by the L27 (37) orthogonal experiment. Subsequently, osmolality and pH were analyzed for the preservation reagent. Additionally, apoptosis and CAR expression of CAR-T cells were measured by flow cytometry, and the cytotoxicity was determined by calcein-AM staining. The results showed that cryopreservation solutions used in this study demonstrated high chemical stability, which induced only 2% CAR-T cells apoptosis in optimal solutions, which were slightly lower than other commercial solutions. Moreover, the CAR expression was not significantly affected by preservation with these solutions. There were no significant differences in the cytotoxicity between fresh and thawed CAR-T cells cryopreserved in the cryopreservation solutions in vivo and in vitro. This study developed a new cryopreservation solution for CAR-T cells, and it was safe and also had negligible effects on the CAR-T cells antitumor activity.
Collapse
Affiliation(s)
- Qulai Tang
- Department of Liquor Making Engineering, Moutai Institute, Renhuai, China
| | - Lixing Gu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Binquan Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiangzhou Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Han Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Haichuan Zhu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yao Xu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Tongcun Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ma Y, Tonelli M, Unsworth LD. Effect of carbamylation on protein structure and adsorption to self-assembled monolayer surfaces. Colloids Surf B Biointerfaces 2021; 203:111719. [PMID: 33831751 DOI: 10.1016/j.colsurfb.2021.111719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Protein adsorption research has primarily focused upon the effects of surface chemistry, with almost no emphasis on how changes to proteins that occur in various disease states may influence their adsorption. One such situation occurs with chronic kidney disease where, despite hemodialysis treatment, the retention of urea within the blood compartment leads to protein carbamylation. Protein carbamylation has been shown to alter the function and structure of proteins. This work is focused on understanding how different degrees of carbamylation affect the physicochemical properties (structure, charge, water interactions) of single proteins (α-lactalbumin, albumin, and fibrinogen) and their adsorption to self-assembled monolayers. It was found that, unlike its secondary structure, the protein's tertiary structure was significantly altered upon carbamylation. Also, compared to native proteins, an increase in carbamylation lead to an increase in the negative surface charge of the protein and a weaker hydration state of the protein. In order to study the effects of different types of neutral surfaces, of different surface-water properties, on protein adsorption both bare and alkanethiol modified (-CH3 or -OH end-groups) Au surfaces with were used as model surfaces. A significant decrease in adsorbed amounts of carbamylated fibrinogen and carbamylated α-lactalbumin, but not for carbamylated albumin, relative to native proteins was observed for both surfaces; suggesting that the increase in negative surface charge is more influential on adsorption than the change in hydration that occurs throughout the protein upon carbamylation. This data suggests that protein alterations that occur due to disease states have a significant effect on the overall protein structure and these changes affect their adsorption to surfaces.
Collapse
Affiliation(s)
- Yuhao Ma
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Larry D Unsworth
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
11
|
Szczurek A. Perspectives on Tannins. Biomolecules 2021; 11:biom11030442. [PMID: 33809775 PMCID: PMC8002309 DOI: 10.3390/biom11030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Andrzej Szczurek
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02097 Warsaw, Poland
| |
Collapse
|
12
|
Benlloch M, Cuerda-Ballester M, Drehmer E, Platero JL, Carrera-Juliá S, López-Rodríguez MM, Ceron JJ, Tvarijonaviciute A, Navarro MÁ, Moreno ML, de la Rubia Ortí JE. Possible Reduction of Cardiac Risk after Supplementation with Epigallocatechin Gallate and Increase of Ketone Bodies in the Blood in Patients with Multiple Sclerosis. A Pilot Study. Nutrients 2020; 12:nu12123792. [PMID: 33322022 PMCID: PMC7763038 DOI: 10.3390/nu12123792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that causes anthropometric changes characterised by functional disability, increase in fat mass, and decrease in lean mass. All these variables are related to a greater cardiac risk. The polyphenol epigallocatechin gallate (EGCG) and an increase in ketone bodies in the blood have been shown to have beneficial effects on anthropometric and biochemical variables related to cardiovascular activity. The aim of this study was to analyse the impact of the intervention with EGCG and ketone bodies on cardiac risk in MS patients. A population of 51 MS patients were randomly assigned to a control group and an intervention group (daily dose of 800 mg of EGCG and 60 mL of coconut oil). Both groups followed an isocaloric diet for 4 months. Levels of beta-hydroxybutyrate (BHB), albumin, paraoxonase 1 (PON1) and C-reactive protein (CRP) were measured in serum before and after the intervention, as well as determining functional ability, waist circumference, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), fat percentage and muscle percentage. After 4 months, in the intervention group there was a significant increase in BHB, PON1 and albumin, while CRP did not vary; a significant decrease in cardiac risk associated with a significant decline in WHR; as well as a significant increase in muscle percentage. By contrast, these changes were not observed in the control group. Finally, results from analysis of variance (ANOVA) revealed a significant time–condition interaction effect, observing that WHtR and fat mass decreased in the intervention group, while they increased in the control group.
Collapse
Affiliation(s)
- María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
| | - María Cuerda-Ballester
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Jose Luis Platero
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain;
| | - María Mar López-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, Carretera Sacramento, C/San Urbano, s/n, La Cañada, 04120 Almería, Spain;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Marí Ángeles Navarro
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| | - Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| |
Collapse
|
13
|
Pronkin PG, Shvedova LA, Tatikolov AS. Hydrophilic meso-substituted cyanine dyes in solution and in complexes with serum albumins: spectral properties and molecular docking study. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01858-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Dönmez Ö, Mogol BA, Gökmen V, Tang N, Andersen ML, Chatterton DEW. Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Food Funct 2020; 11:6038-6053. [DOI: 10.1039/d0fo00783h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Milk proteins bind flavanoids (EGCG and green tea extract), affecting theirin vitrodigestibility and modulating flavanoid free radical scavenging.
Collapse
Affiliation(s)
- Özge Dönmez
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Burçe Ataç Mogol
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group
- Department of Food Engineering
- Hacettepe University
- Ankara
- Turkey
| | - Ning Tang
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| | - Mogens Larsen Andersen
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| | - Dereck E. W. Chatterton
- Department of Food Science
- Faculty of Science
- University of Copenhagen
- DK-1958 Frederiksberg C
- Denmark
| |
Collapse
|