1
|
Švestková P, Balík J, Soural I. Synergistic effect of selected carboxylic acids and phenolic compounds detected by the FRAP method. Food Chem X 2024; 23:101573. [PMID: 39050678 PMCID: PMC11268200 DOI: 10.1016/j.fochx.2024.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Antioxidants in nutrition are a widely discussed topic. In this study, a synergistic effect was observed for 13 selected substances - antioxidants and potential synergists, whereby two substances were mixed in the same concentration ratio of 1:1. The antioxidant capacity (AC) of the mixtures was determined using the FRAP method. The AC measured was compared with a theoretical AC value (as only additive effect) to calculate the synergistic or antagonistic effect. Out of 78 possible combinations, a synergistic effect (SE) was detected in 72. For the 10 combinations, the SE was more than twice that of the pure substances. The largest synergistic effect was exhibited by vanillin and 4-hydroxybenzoic acid with increases even above 200% compared to the pure substances. Some of the phenolic substances that were subject to measurement can be used for the fortification of fruit juices.
Collapse
Affiliation(s)
- Petra Švestková
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Josef Balík
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Ivo Soural
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| |
Collapse
|
2
|
Li MY, Pei XX, Shi N, Yang YM, Fan ST, Sun YF, Kong QS, Duan CQ, Yu K, Wang J. Volatomic differences among Vitis amurensis cultivars and its hybrids with V. vinifera revealed the effects of genotype, region, and vintage on grape aroma. Food Res Int 2024; 191:114726. [PMID: 39059919 DOI: 10.1016/j.foodres.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Vitis amurensis grape, an East Asian Vitis species, has excellent cold and disease resistance and exhibits high winemaking potential. In this study, the aroma compounds in grapes from five V. amurensis cultivars ('Beiguohong', 'Beiguolan', 'Shuangfeng', 'Shuanghong', 'Shuangyou') and three interspecific hybrids ('Beibinghong', 'Xuelanhong', 'Zuoyouhong') from two regions (Zuojia and Ji'an, Jilin, China) were identified via HS-SPME-GC/MS. The results showed that V. amurensis grapes had a greater concentration of aroma compounds than the interspecific hybrid berries. 'Beibinghong' was relatively rich in terpenes, although their concentrations were all lower than the threshold. 'Shuangfeng' contained more concentrations of free C6/C9 compounds, alcohols, aromatics and aldehydes/ketones than the other cultivars. The aroma characteristics of 'Beiguolan' and 'Shuanghong' were relatively similar. The grapes from the lower temperature and more fertile soil of Zuojia contained more C6/C9 compounds, norisoprenoids and alcohols, while aromatics were more abundant in the grapes from Ji'an, which was warmer than the Zuojia region. Herbaceous, floral, fruity and sweet were the main aroma series of V. amurensis grapes. Our study could provide a reference for the development and utilization of V. amurensis grapes and lay a foundation for the development of wild grape cultivars and the production of wines with characteristic styles.
Collapse
Affiliation(s)
- Ming-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xuan-Xuan Pei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi-Ming Yang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shu-Tian Fan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Feng Sun
- Ji'an Ginseng Feature Industry Development Center, Ji'an 134200, China
| | - Qing-Sen Kong
- Ji'an Yajiang Valley Winery Co., Ltd., Ji'an 134202, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
3
|
Schwartz M, Poirier N, Moreno J, Proskura A, Lelièvre M, Heydel JM, Neiers F. Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. Int J Mol Sci 2024; 25:6412. [PMID: 38928118 PMCID: PMC11203769 DOI: 10.3390/ijms25126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
β C-S lyases (β-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of β carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial β-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial β-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. β-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, β-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on β-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of β-CSLs as a flavor enhancer.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Nicolas Poirier
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jade Moreno
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Alena Proskura
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| |
Collapse
|
4
|
Xu X, Cheng C, Qian X, Shi Y, Duan C, Lan Y. Influences of Cluster Thinning on Fatty Acids and Green Leaf Volatiles in the Production of Cabernet Sauvignon Grapes and Wines in the Northwest of China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1225. [PMID: 38732440 PMCID: PMC11085434 DOI: 10.3390/plants13091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Cluster thinning has been widely applied in yield management and its effect on green leaf volatiles (GLVs) in wines has seldom been studied. GLVs are important flavor compositions for grapes and wines. This work aimed to investigate the impact of cluster thinning on these volatiles and their precursors in grapes and wines. Severe cluster thinning (CT1) and medium cluster thinning (CT2) were performed on Cabernet Sauvignon (Vitis vinifera L.) vines in two sites (G-farm and Y-farm) from Xinjiang province in the Northwest of China. The impact of cluster thinning treatments on the accumulation of GLVs and their precursors, long chain fatty acids (LCFAs) of grape berries and C6 volatiles, in resulting wines was investigated. Multivariate analysis showed that cluster thinning treatments induced significant changes in fruit and wine composition in both farms. In Y-farm, medium cluster thinning (CT2) significantly increased the average cluster weight of harvested berries. Additionally, both cluster thinning treatments (CT1 and CT2) increased fatty acids in harvested berries and CT2 led to an increase in C6 esters and a decrease in C6 alcohols in the wines of Y-farm under the warmer and drier 2012 vintage. However, the effect of cluster thinning was likely negative in G-farm due to its wetter soil and excessive organic matter. The treatments may be applicable for local grape growers to improve viticultural practices for the more balanced vegetative and reproductive growth of Cabernet Sauvignon grapevines. This work also provided further knowledge on the regulation of fatty acids and the derived C6 volatiles through the lipoxygenase (LOX) pathway.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Centre for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (Y.S.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang Wine Industry Innovation Research Institute, Manasi 832200, China;
| | - Xu Qian
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China;
| | - Ying Shi
- Centre for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (Y.S.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Changqing Duan
- Centre for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (Y.S.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yibin Lan
- Centre for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (Y.S.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Fonseca D, Martins N, Garcia R, Cabrita MJ. Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector-An Effective Tool to Trace the Signature of Grape Varieties. Molecules 2024; 29:1989. [PMID: 38731480 PMCID: PMC11085376 DOI: 10.3390/molecules29091989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Varietal volatile compounds are characteristic of each variety of grapes and come from the skins of the grapes. This work focuses on the development of a methodology for the analysis of free compounds in grapes from Trincadeira, Cabernet Sauvignon, Syrah, Castelão and Tinta Barroca from the 2021 and 2022 harvests, using HS-SPME-GC × GC-TOFMS. To achieve this purpose, a previous optimization step of sample preparation was implemented, with the optimized conditions being 4 g of grapes, 2 g of NaCl, and 2 mL of H2O. The extraction conditions were also optimized, and it was observed that performing the extraction for 40 min at 60 °C was the best for identifying more varietal compounds. The fiber used was a triple fiber of carboxen/divinylbenzene/polydimethylsiloxane (CAR/DVB/PDMS). In addition to the sample preparation, the analytical conditions were also optimized, enabling the adequate separation of analytes. Using the optimized methodology, it was possible to identify fifty-two free volatile compounds, including seventeen monoterpenes, twenty-eight sesquiterpenes, and seven C13-norisoprenoids. It was observed that in 2021, more free varietal volatile compounds were identifiable compared to 2022. According to the results obtained through a linear discriminant analysis (LDA), the differences in volatile varietal signature are observed both among different grape varieties and across different years.
Collapse
Affiliation(s)
- Daniela Fonseca
- Mediterranean Institute for Agriculture, Environment and Development & Institute of Research and Advanced Training, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Nuno Martins
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
| | - Raquel Garcia
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
- Department of Crop Science, School of Science and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria João Cabrita
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
- Department of Crop Science, School of Science and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
6
|
Sánchez-Acevedo E, Lopez R, Ferreira V. Kinetics of aroma formation from grape-derived precursors: Temperature effects and predictive potential. Food Chem 2024; 438:137935. [PMID: 37979268 DOI: 10.1016/j.foodchem.2023.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
This study investigates the accumulation and degradation of aroma molecules released by acid hydrolysis of aroma precursors in winemaking grapes. A first-order kinetics model effectively interprets this accumulation, including subsequent degradation. Experimentation at three temperatures categorizes specific grape-derived aroma molecules into three stability-based groups: labile molecules from labile precursors, stable molecules from labile precursors, and stable molecules from stable precursors. While many grape-derived aromas exhibit similar patterns and levels of accumulation across temperatures, reaction rates significantly increase with temperature. The analysis of 12 samples of two grape varieties hydrolyzed at 50 °C for 5 weeks and 75 °C for 24 h confirms that fast hydrolysis accurately replicates varietal and between-sample aroma compositional differences. Moreover, the accumulated levels of 21 relevant grape-derived aromas strongly correlate with those at 50 °C, indicating that fast hydrolysis at 75 °C reliably predicts grape aroma potential.
Collapse
Affiliation(s)
- Elayma Sánchez-Acevedo
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain.
| | - Ricardo Lopez
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain.
| | - Vicente Ferreira
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain.
| |
Collapse
|
7
|
Liao H, Asif H, Huang X, Luo Y, Xia X. Mitigation of microbial nitrogen-derived metabolic hazards as a driver for safer alcoholic beverage choices: An evidence-based review and future perspectives. Compr Rev Food Sci Food Saf 2023; 22:5020-5062. [PMID: 37823801 DOI: 10.1111/1541-4337.13253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.
Collapse
Affiliation(s)
- Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hussain Asif
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
8
|
Lin Z, Li B, Liao M, Liu J, Zhou Y, Liang Y, Yuan H, Li K, Li H. The Physicochemical Attributes, Volatile Compounds, and Antioxidant Activities of Five Plum Cultivars in Sichuan. Foods 2023; 12:3801. [PMID: 37893694 PMCID: PMC10606457 DOI: 10.3390/foods12203801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plum (Prunus salicina Lindl.) is an important stone fruit crop in Sichuan that is increasingly in demand by consumers owing to its flavor and outstanding nutraceutical properties. The physicochemical characteristics, antioxidant capacity, and volatile profiles of five traditional and new plum cultivars in Sichuan were determined using high-performance liquid chromatography and gas chromatography time-of-flight mass spectrometry. The results showed that all plums exhibited an appropriate quality profile for fresh consumption; the new cultivar 'ZH' exhibited the highest soluble solids content, sugar-acid ratio, total phenolic content, total flavonoid content, and antioxidant capacity. High sugar-low acid properties were observed in five plum cultivars. Sucrose was the main sugar, while quinic acid and malic acid were the main organic acids. The plums were rich in volatile compounds and had specific volatile characteristics. A total of 737 volatiles were identified in the plum fruit, and orthogonal partial least-squares discriminant analysis was employed to screen 40 differential volatiles as markers for cultivar distinction. These findings offer comprehensive information on the physicochemical characteristics, antioxidant capacity, and volatile profiles of plums.
Collapse
Affiliation(s)
- Zixi Lin
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| | - Binbin Li
- Institute of Agricultural Products Processing Research, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China;
| | - Maowen Liao
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| | - Jia Liu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610039, China;
| | - Yan Zhou
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| | - Yumei Liang
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| | - Huaiyu Yuan
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| | - Ke Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Huajia Li
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China; (Z.L.); (M.L.); (Y.Z.); (Y.L.); (H.Y.)
| |
Collapse
|
9
|
Bates TL, Sacks GL. Rapid headspace solid-phase microextraction sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile phenols in grape juices and wines. Anal Chim Acta 2023; 1275:341577. [PMID: 37524464 DOI: 10.1016/j.aca.2023.341577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Volatile phenols possess "smoky, spicy" aromas and are routinely measured in grapes, wines and other foodstuffs for quality control. Routine analyses of volatile phenols rely on gas chromatography - mass spectrometry (GC-MS), but slow throughput of GC-MS can cause challenges during times of surge demand, i.e. following 'smoke taint' events involving forest fires near vineyards. Parallel extraction of headspace volatiles onto sorbent sheets (HS-SPMESH) followed by direct analysis in real time mass spectrometry (DART-MS) is a rapid alternative to conventional GC-MS approaches. However, HS-SPMESH extraction is poorly suited for lower volatility odorants, including volatile phenols. This work reports development and validation of an HS-SPMESH-DART-MS approach for five volatile phenols (4-ethylphenol, 4-ethylguiacol, guaiacol, 4-methylguaiacol, and cresols). Prior to HS-SPMESH extraction, volatile phenols were acetylated to facilitate their extraction. A unique feature of this work was the use of d6-Ac2O as a derivatizing agent to overcome issues with isobaric interferences inherent to chromatography-free MS techniques. The use of alkaline conditions during derivatization resulted in cumulative measurement of both free and bound forms of volatile phenols. The validated HS-SPMESH-DART-MS method achieved a throughput of 24 samples in ∼60 min (including derivatization and extraction time) with low limits of detection (<1 μg L-1) and good repeatability (3-6% RSD) in grape and wine matrices. Validation experiments with smoke-tainted grape samples indicated good correlation between total (free + bound) volatile phenols measured by HS-SPMESH-DART-MS and a gold standard GC-MS method.
Collapse
Affiliation(s)
- Terry L Bates
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA
| | - Gavin L Sacks
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
10
|
Asproudi A, Bonello F, Ragkousi V, Gianotti S, Petrozziello M. Aroma precursors of Grignolino grapes ( Vitis vinifera L.) and their modulation by vintage in a climate change scenario. FRONTIERS IN PLANT SCIENCE 2023; 14:1179111. [PMID: 37600189 PMCID: PMC10436553 DOI: 10.3389/fpls.2023.1179111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Current climatic conditions may cause significant changes in grapevine phenology and maturity dynamics linked often with changes to ecoclimatic indicators. The influence exerted by different meteorological conditions during four consecutive years on the aromatic potential of Grignolino grapes was investigated for the first time. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard exposure and by a different age of the plants. Important differences as far as temperature and rainfall patterns are concerned during ripening were observed among the 4 years. Grape responses to abiotic stress, with particular emphasis on aromatic precursors, were evaluated using gas chromatography coupled to mass spectrometry. The results highlighted significant differences among the vintages for each vineyard in terms of the berry weight and the aromatic precursor concentration. For the grapes of the younger-vine vineyard, the content of aroma compounds showed a different variability among the vintages if compared to the old-vine vineyards. Optimal conditions in terms of temperature and rainfall during the green phase followed by a warm and dry post-veraison period until harvest favored all classes of compounds especially terpenoids mainly in the grapes of the old vines. High-temperature (>30°C) and low-rainfall pattern before veraison led to high benzenoid contents and increased differences among vineyards such as berry weight, whereas cooler conditions favored the terpenoid levels in grapes from southeast-oriented vineyards. In a hilly environment, lack of rainfall and high temperature that lately characterize the second part of berry development seem to favor the grape quality of Grignolino, a cultivar of medium-late ripening, by limiting the differences on bunch ripening, allowing a greater accumulation of secondary metabolites but maintaining at the same time an optimum balance sugar/acidity.
Collapse
Affiliation(s)
- Andriani Asproudi
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Federica Bonello
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Vasiliki Ragkousi
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| | - Silvia Gianotti
- Associazione Monferace, Alessandria, Italy
- Wine Consulting Mario Ronco, Asti, Italy
| | - Maurizio Petrozziello
- Research centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Asti, Italy
| |
Collapse
|
11
|
Chen Z, Wu YP, Lan YB, Cui YZ, Shi TH, Hua YB, Duan CQ, Pan QH. Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China. Foods 2023; 12:2668. [PMID: 37509760 PMCID: PMC10378549 DOI: 10.3390/foods12142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Bohai Bay region is a famous wine-growing area in China, where the rainfall is concentrated in the summer due to the influence of the temperate semi-humid monsoon climate. As such, the vineyard terrain has a significant impact on the flavor quality of the grapes and the resulting wines. To explore the relationship between the 'Cabernet Sauvignon' wine style and terrain, this study takes four different plots in the Jieshi Mountain region to investigate the differences in the aroma profile of Cabernet Sauvignon grapes and wines of two consecutive vintages. Based on two-way ANOVA, there were 25 free and 8 glycosylated aroma compounds in the grapes and 21 and 10 aroma compounds with an odor activity value greater than 0.1 in the wines at the end of alcohol fermentation (AF) and malolactic fermentation (MLF), respectively, that varied among the four plots. Wines from the four plots showed a significant difference in floral and fruity aroma attributes, which were mainly related to esters with high odor activity values. The difference in concentration of these compounds between plots was more pronounced in 2021 than in 2020, and a similar result was shown on the Shannon-Wiener index, which represents wine aroma diversity. It has been suggested that high rainfall makes the plot effect more pronounced. Pearson's correlation analysis indicated that concentrations of (E)-3-hexen-1-ol in grapes and ethyl 3-methylbutanoate, ethyl hexanoate, isoamyl acetate, isopentanoic acid, and phenethyl acetate in wines were strongly positively correlated with the concentrations of N, P, K, Fe, and electrical conductivity in soil but negatively correlated with soil pH. This study laid a theoretical foundation for further improving the level of vineyard management and grape and wine quality in the Jieshi Mountain region.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang-Peng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi-Bin Lan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan-Zhi Cui
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Tong-Hua Shi
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Yu-Bo Hua
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Chang-Qing Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
12
|
Bueno M, Zapata J, Culleré L, Franco-Luesma E, de-la-Fuente-Blanco A, Ferreira V. Optimization and Validation of a Method to Determine Enolones and Vanillin Derivatives in Wines-Occurrence in Spanish Red Wines and Mistelles. Molecules 2023; 28:molecules28104228. [PMID: 37241968 DOI: 10.3390/molecules28104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Understanding the chemical nature of wine aroma demands accurate quantitative determinations of different odor-active compounds. Quantitative determinations of enolones (maltol, furaneol, homofuraneol, and sotolon) and vanillin derivatives (vanillin, methyl vanillate, ethyl vanillate, and acetovanillone) at low concentrations are complicated due to their high polarity. For this reason, this paper presents an improved and automated version for the accurate measure of these common trace wine polar compounds (enolones and vanillin derivatives). As a result, a faster and more user-friendly method with a reduction of organic solvents and resins was developed and validated. The optimization of some stages of the solid phase extraction (SPE) process, such as washing with an aqueous solution containing 1% NaHCO3 at pH 8, led to cleaner extracts and solved interference problems. Due to the polarity of these type of compounds, an optimization of the large volume injection was also carried out. Finally, a programmable temperature vaporization (PTV) quartz glass inlet liner without wool was used. The injector temperature was raised to 300 °C in addition to applying a pressure pulse of 180 kPa for 4 min. Matrix effects were solved by the use of adequate internal standards, such as ethyl maltol and 3',4'-(methylenedioxy)acetophenone. Method figures of merit were highly satisfactory: good linearity (r2 > 0.98), precision (relative standard deviation, RSD < 10%), high recovery (RSD > 89%), and low detection limits (<0.7 μg/L). Enolones and vanillin derivatives are associated with wine aging. For this reason, the methodology was successfully applied to the quantification of these compounds in 16 Spanish red wines and 12 mistelles. Odor activity values (OAV) indicate that furaneol should be considered an aroma impact odorant in red wines and mistelles (OAV > 1) while homofuraneol and sotolon could also produce changes in their aroma perceptions (0.1 < OAV < 1).
Collapse
Affiliation(s)
- Mónica Bueno
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| | - Julián Zapata
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| | - Laura Culleré
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| | - Ernesto Franco-Luesma
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| | - Arancha de-la-Fuente-Blanco
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| | - Vicente Ferreira
- Laboratory for Aroma Analysis and Enology (LAAE), Departament of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Agostinelli F, Caldeira I, Ricardo-da-Silva JM, Damásio M, Egipto R, Silvestre J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2063. [PMID: 37653980 PMCID: PMC10224026 DOI: 10.3390/plants12102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Adaptation strategies in the wine sector consist of the use of cultural techniques to limit damages caused by climate change, using, among other resources, varieties better adapted to the scenarios of abiotic stress exacerbation, namely water and thermal stress, as well as those more tolerant to heatwaves. With the intention to determine the aromatic characterization of ten monovarietal wines produced from cultivars with high productive performance in a global warming scenario ('Petit Verdot', 'Marselan', 'Merlot', 'Touriga Franca', 'Syrah', 'Vinhão', 'Bobal', 'Preto Martinho', 'Trincadeira', and 'Alicante Bouschet'), grown in Esporão vineyard (Alentejo, Portugal) and submitted to deficit irrigation (Ks ± 0.5), their aromatic character has been analyzed. Each grape variety was vinified at a small scale, in duplicate, and the wines were evaluated by a sensory panel, which rated several sensory attributes (visual, olfactory, and gustatory). Sensory analysis revealed a discrete appreciation for the monovarietal wines tasted, showing a differentiation at the olfactory level that was not too marked, although present, between the samples. The free volatile compounds were analysed using gas chromatography-olfactometry (GC-O), identified using a gas chromatography-mass spectrometry (GC-MS) technique and semi-quantified using the gas chromatography-flame ionization detector (GC-FID) technique. Based on the interpolation of the results of the various statistical analyses carried out, 49 probable odor active compounds (pOACs) were identified and based on the odor activity values (OAVs), 24 of them were recognized as odor active compounds (OACs) originated mainly during the fermentation processes. An aromatic characterization of the varieties has been proposed.
Collapse
Affiliation(s)
- Francesco Agostinelli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Via Verdi, 8, 10124 Torino, Italy;
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ilda Caldeira
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, 7006-554 Évora, Portugal
| | - Jorge M. Ricardo-da-Silva
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Miguel Damásio
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ricardo Egipto
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - José Silvestre
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| |
Collapse
|
14
|
Effects of ultraviolet and infrared radiation absence or presence on the aroma volatile compounds in winegrape during veraison. Food Res Int 2023; 167:112662. [PMID: 37087251 DOI: 10.1016/j.foodres.2023.112662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Light environmental factors have been identified to influence grape aromas greatly. Among them, the effect of non-visible light on grape aroma compounds has scarcely been investigated during grape growth and development. In the present study, ultraviolet (UV) or infrared (IR) radiation was eliminated in the grape bunch zone, and the grape bunches were irradiated with UV or IR light in vitro. The effect of UV and IR radiation on the grape aroma profile of the Cabernet Sauvignon variety was assessed by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME GC-MS). A total of 16 aroma compounds were identified in the grape berries under UV radiation absence (UV-) or IR radiation absence (IR-). They were classified into aliphatic alcohols, aliphatic acids, benzenolds, aldehydes, and monoterpenes. A total of 23 aroma compounds were identified in the grape berries under UV radiation presence (UV+) or IR radiation presence (IR+), which were classified into aliphatic alcohols, aliphatic ketones, aliphatic esters, aliphatic acids, monoterpenes, aldehydes, volatile phenols, and other volatiles. Linalool and hexanal aroma compounds were the most responsive to UV- and UV+, according to OPLS-DA analysis. Hexanal was increased by UV- and decreased by UV+, thus was negatively correlated with UV radiation. Benzaldehyde and 2-decanone were also found as the main differing aroma compounds according to VIP scores in the IR- and IR+, respectively. The significant differences of aroma compounds in three UV and IR intensities were also observed by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The content of acetic acid, 2-methylbutanal, and pentanal were reduced with the radiation intensity increase, and the content of 2-3-butanedione, butyl acetate, and 1-hexanol was enhanced, especially with UV radiation. This study improves our understanding of the non-visible light role in volatile aroma compound accumulation and further expands on the useful wavelength for plant growth and development. Our study provides a theoretical basis for non-visible light field management and indoor plant growth applications.
Collapse
|
15
|
Ling M, Chai R, Xiang X, Li J, Zhou P, Shi Y, Duan C, Lan Y. Characterization of key odor-active compounds in Chinese Dornfelder wine and its regional variations by application of molecular sensory science approaches. Food Chem X 2023; 17:100598. [PMID: 36845498 PMCID: PMC9944611 DOI: 10.1016/j.fochx.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, aroma characteristics and odor-active compounds in Dornfelder wines from three main production regions of China were comprehensively investigated for the first time. The leading features of Chinese Dornfelder wines were black fruit, violet, acacia/lilac, red fruit, spice, dried plum, honey, and hay based on check-all-that-apply. Wines from the Northern Foothills of Tianshan Mountains and Eastern Foothills of Helan Mountains were dominated by floral and fruity aromas, while wines from the Jiaodong Peninsula were characterized by mushroom/earth, hay, and medicinal material notes. Aroma profiles of Dornfelder wines in three regions were successfully reconstructed with 61 volatiles determined by AEDA-GC-O/MS and OAV. Through aroma reconstitution, omission tests, and descriptive analysis, terpenoids could be regarded as varietal characteristic compounds directly contributing to floral perception in Dornfelder wines. Guaiacol, eugenol, and isoeugenol were further revealed to have a synergistic effect with linalool and geraniol on violet, acacia/lilac, spice, and black fruit.
Collapse
Affiliation(s)
- Mengqi Ling
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ruixue Chai
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaofeng Xiang
- Key Laboratory of Lipid Resources Utilization and Children's Daily Chemicals, Chongqing University of Education, Chongqing, 400067, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China,Corresponding author at: Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
16
|
Volatile and sensory characterization of Tempranillo wines aged in Quercus alba oak barrels of different geographical origins in USA. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Li J, Quan Y, Wang L, Wang S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int J Mol Sci 2022; 24:ijms24010445. [PMID: 36613887 PMCID: PMC9820165 DOI: 10.3390/ijms24010445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroid (BR) is an important endogenous phytohormone that plays a significant role in fruit quality regulation. The regulation of BR biosynthesis and its physiological effects have been well-studied in various fruits. External quality (fruit longitudinal and transverse diameters, firmness, single berry weight, color) and internal quality (sugars, aroma, anthocyanin, stress-related metabolites) are important parameters that are modified during grape berry development and ripening. Grapevines are grown all over the world as a cash crop and utilized for fresh consumption, wine manufacture, and raisin production. In this paper, the biosynthesis and signaling transduction of BR in grapevine were summarized, as well as the recent developments in understanding the role of BR in regulating the external quality (fruit longitudinal and transverse diameters, firmness, single berry weight, and color) and internal quality (sugars, organic acids, aroma substances, anthocyanins, antioxidants) of grapes. Additionally, current advancements in exogenous BR strategies for improving grape berries quality were examined from the perspectives of enzymatic activity and transcriptional regulation. Furthermore, the interaction between BR and other phytohormones regulating the grape berry quality was also discussed, aiming to provide a reliable reference for better understanding the potential value of BR in the grape/wine industry.
Collapse
|
18
|
Boban A, Vrhovsek U, Carlin S, Mucalo A, Budić-Leto I. A Targeted and an Untargeted Metabolomics Approach to the Volatile Aroma Profile of Young 'Maraština' Wines. Metabolites 2022; 12:1295. [PMID: 36557333 PMCID: PMC9780986 DOI: 10.3390/metabo12121295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
This study investigated the detailed volatile aroma profile of young white wines of Maraština, Vitis Vinifera L., produced by spontaneous fermentation. The wines were produced from 10 vineyards located in two Dalmatian subregions (Northern Dalmatia and Central and Southern Dalmatia). Volatile compounds from the wine samples were isolated by solid-phase extraction (SPE) and analyzed by an untargeted approach using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOF-MS) and a targeted approach by gas chromatography-tandem mass spectrometry (GC-MS/MS). A comprehensive two-dimensional GC×GC analysis detailed the total volatile metabolites in the wines due to its excellent separation ability. More than 900 compounds were detected after untargeted profiling; 188 of them were identified or tentatively identified. A total of 56 volatile compounds were identified and quantified using GC-MS/MS analysis. The predominant classes in Maraština wines were acids, esters, and alcohols. The key odorants with odor activity values higher than one were β-damascenone, ethyl caprylate, ethyl isovalerate, ethyl 2-methylbutyrate, ethyl caproate, isopentyl acetate, ethyl butyrate, and phenylacetaldehyde. The metabolomics approach can provide a large amount of information and can help to anticipate variation in wines or change winemaking procedures.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, 38010 San Michele all’Adige, Italy
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, 38010 San Michele all’Adige, Italy
| | - Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
| |
Collapse
|
19
|
Berthou M, Clarot I, Gouyon J, Steyer D, Monat MA, Boudier A, Pallotta A. Thiol sensing: From current methods to nanoscale contribution. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Huang R, Zhang F, Zhou H, Yu H, Shen L, Jiang J, Qin Y, Liu Y, Song Y. Characterization of Trichoderma reesei endoglucanase displayed on the Saccharomyces cerevisiae cell surface and its effect on wine flavor in combination with β-glucosidase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Šikuten I, Štambuk P, Tomaz I, Marchal C, Kontić JK, Lacombe T, Maletić E, Preiner D. Discrimination of genetic and geographical groups of grape varieties ( Vitis vinifera L.) based on their volatile organic compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:942148. [PMID: 36340348 PMCID: PMC9634546 DOI: 10.3389/fpls.2022.942148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Grape volatile organic compounds (VOCs) play an important role in the winemaking industry due to their contribution to wine sensory characteristics. Another important role in the winemaking industry have the grapevine varieties used in specific regions or countries for wine production. Due to the high variability of grapevine germplasm, grapevine varieties are as classified based on their genetic and geographical origin into genetic-geographic groups (GEN-GEO). The aim of this research was to investigate VOCs in 50 red grapevine varieties belonging to different GEN-GEO groups. The study included varieties from groups C2 (Italy and France), C7 (Croatia), and C8 (Spain and Portugal). The analysis of VOCs was performed by SPME-Arrow-GC/MS directly from grape skins. The analyzed VOCs included aldehydes, ketones, acids, alcohols, monoterpenes, and sesquiterpenes. The most abundant VOCs were aldehydes and alcohols, while the most numerous were sesquiterpenes. The most abundant compounds, aldehydes and alcohols, were found to be (E)-2-hexenal, hexenal, (E)-2-hexen-1-ol, and 1-hexanol. Using discriminant analysis, the GEN-GEO groups were separated based on their volatile profile. Some of the individual compounds contributing to the discrimination were found in relatively small amounts, such as benzoic acid, (E,E)-2,4-hexadienal, 4-pentenal, and nonanoic acid. The groups were also discriminated by their overall volatile profile: group C2 was characterized by a higher content of aldehydes and alcohols, and group C8 was characterized by a higher content of sesquiterpenes and acids. Group C7 was characterized by all low amount of all classes of VOCs.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Cecile Marchal
- Grapevine Biological Resources Center, INRAE, Unité Experimental Domaine de Vassal, University of Montpellier, Marseillan, France
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Thierry Lacombe
- AGAP, University of Montpellier CIRAD, Institut Agro, Montpellier, France
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Koyama K, Kono A, Ban Y, Bahena-Garrido SM, Ohama T, Iwashita K, Fukuda H, Goto-Yamamoto N. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:458. [PMID: 36151514 PMCID: PMC9503205 DOI: 10.1186/s12870-022-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although grapes accumulate diverse groups of volatile compounds, their genetic regulation in different cultivars remains unelucidated. Therefore, this study investigated the volatile composition in the berries of an interspecific hybrid population from a Vitis labruscana 'Campbell Early' (CE) × Vitis vinifera 'Muscat of Alexandria' (MA) cross to understand the relationship among volatile compounds and their genetic regulation. Then, a quantitative trait locus (QTL) analysis of its volatile compounds was conducted. RESULTS While MA contained higher concentrations of monoterpenes and norisoprenoids, CE contained higher concentrations of C6 compounds, lactones and shikimic acid derivatives, including volatiles characteristic to American hybrids, i.e., methyl anthranilate, o-aminoacetophenone and mesifurane. Furthermore, a cluster analysis of volatile profiles in the hybrid population discovered ten coordinately modulated free and bound volatile clusters. QTL analysis identified a major QTL on linkage group (LG) 5 in the MA map for 14 monoterpene concentrations, consistent with a previously reported locus. Additionally, several QTLs detected in the CE map affected the concentrations of specific monoterpenes, such as linalool, citronellol and 1,8-cineol, modifying the monoterpene composition in the berries. As for the concentrations of five norisoprenoids, a major common QTL on LG2 was discovered first in this study. Several QTLs with minor effects were also discovered in various volatile groups, such as lactones, alcohols and shikimic acid derivatives. CONCLUSIONS An overview of the profiles of aroma compounds and their underlying QTLs in a population of interspecific hybrid grapes in which muscat flavor compounds and many other aroma compounds were mixed variously were elucidated. Coordinate modulation of the volatile clusters in the hybrid population suggested an independent mechanism for controlling the volatiles of each group. Accordingly, specific QTLs with significant effects were observed for terpenoids, norisoprenoids and some volatiles highly contained in CE berries.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Yusuke Ban
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), NARO, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan
| | | | - Tomoko Ohama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hisashi Fukuda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
23
|
Bates TL, Rafson J, Feng H, Pan BS, Mueller BRJ, Yancey B, Fatigante W, Sacks GL. Optimized Solid-Phase Mesh-Enhanced Sorption from Headspace (SPMESH) for Rapid Sub-ng/kg Measurements of 3-Isobutyl-2-methoxypyrazine (IBMP) in Grapes. Molecules 2022; 27:molecules27196195. [PMID: 36234747 PMCID: PMC9573488 DOI: 10.3390/molecules27196195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound’s odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.
Collapse
Affiliation(s)
- Terry L. Bates
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Jessica Rafson
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Hui Feng
- E&J Gallo Winery, Modesto, CA 95354, USA
| | | | | | | | | | - Gavin L. Sacks
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
- Correspondence: ; Tel.: +1-607-255-2335
| |
Collapse
|
24
|
Gu X, Zhang X, Wang K, Lv X, Li R, Ma W. GC-MS Untargeted Analysis of Volatile Compounds in Four Red Grape Varieties ( Vitis vinifera L. cv) at Different Maturity Stages near Harvest. Foods 2022; 11:foods11182804. [PMID: 36140932 PMCID: PMC9497989 DOI: 10.3390/foods11182804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Grape volatile compounds directly determine the aroma quality of wines. Although the aroma profile of grapes evolved greatly at different maturity stages, there were less considerations for aroma status when determining grape harvest time. In the present study, several maturation indicators, namely, sugars/acids ratio, free volatile compounds, bound volatile compounds and IBMP (3-isobutyl-2-methoxypyrazine) content were monitored in four red wine grape varieties (Vitis vinifera L. cv Cabernet Sauvignon, Cabernet Gernischet, Cabernet Franc and Merlot) near harvest time (42 days) in Ningxia, China. The results showed that the highest sugars/acids ratio was reached on day 21 and day 28 for Merlot and the other three varieties, respectively. For both free and bound volatile compounds, the content of carbonyl compounds decreased continuously in the process of ripening. The contents of free alcohols, esters and terpenes increased in the ripening stage and decreased in the stage of over-ripening. The accumulation of favorable bound aroma compounds peaked at day 35. The content of IBMP presenting a green smell in all four varieties descended continuously and kept steady from day 28. Therefore, the present findings revealed that the best aroma maturity time of four studied grape varieties was later than the sugars/acids ratio in Ningxia region. Aroma maturity should be taken into account during harvest time determination.
Collapse
Affiliation(s)
- Xiaobo Gu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Xue Zhang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Keqing Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Xi Lv
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Ruyi Li
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Wen Ma
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
25
|
Charnock HM, Pickering GJ, Kemp BS. The Maillard reaction in traditional method sparkling wine. Front Microbiol 2022; 13:979866. [PMID: 36090075 PMCID: PMC9459140 DOI: 10.3389/fmicb.2022.979866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The Maillard reaction between sugars and amino acids, peptides, or proteins generates a myriad of aroma compounds through complex and multi-step reaction pathways. While the Maillard has been primarily studied in the context of thermally processed foods, Maillard-associated products including thiazoles, furans, and pyrazines have been identified in aged sparkling wines, with associated bready, roasted, and caramel aromas. Sparkling wines produced in the bottle-fermented traditional method (Méthode Champenoise) have been the primary focus of studies related to Maillard-associated compounds in sparkling wine, and these wines undergo two sequential fermentations, with the second taking place in the final wine bottle. Due to the low temperature (15 ± 3°C) and low pH (pH 3-4) conditions during production and aging, we conclude that Maillard interactions may not proceed past intermediate stages. Physicochemical factors that affect the Maillard reaction are considered in the context of sparkling wine, particularly related to pH-dependent reaction pathways and existing literature pertaining to low temperature and/or low pH Maillard activity. A focus on the origins and composition of precursor species (amino acids and sugars) in sparkling wines is presented, as well as the potential role of metal ions in accelerating the Maillard reaction. Understanding the contributions of individual physicochemical factors to the Maillard reaction in sparkling wine enables a clearer understanding of reaction pathways and sensory outcomes. Advancements in analytical techniques for monitoring the Maillard reaction are also described, and important areas of future research on this topic are identified.
Collapse
Affiliation(s)
- Hannah M. Charnock
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| | - Gary J. Pickering
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
- Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON, Canada
- National Wine and Grape Industry Center, Charles Sturt University, Wagga Wagga, NSW, Australia
- Sustainability Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Belinda S. Kemp
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
- Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON, Canada
| |
Collapse
|
26
|
Neiers F, Gourrat K, Canon F, Schwartz M. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon-Sulfur Lyase from the Oral Anaerobe Fusobacterium nucleatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9969-9979. [PMID: 35920882 DOI: 10.1021/acs.jafc.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavor perception is a key factor in the acceptance or rejection of food. Aroma precursors such as cysteine conjugates are present in various plant-based foods and are metabolized into odorant thiols in the oral cavity. To date, the involved enzymes are unknown, despite previous studies pointing out the likely involvement of carbon-sulfur lyases (C-S lyases) from the oral microbiota. In this study, we show that saliva metabolizes allyl-cysteine into odorant thiol metabolites, with evidence suggesting that microbial pyridoxal phosphate-dependent C-S lyases are involved in the enzymatic process. A phylogenetic analysis of PatB C-S lyase sequences in four oral subspecies of Fusobacterium nucleatum was carried out and led to the identification of several putative targets. FnaPatB1 from F. nucleatum subspecies animalis, a putative C-S lyase, was characterized and showed high activity with a range of cysteine conjugates. Enzymatic and X-ray crystallographic data showed that FnaPatB1 metabolizes cysteine derivatives within a unique active site environment that enables the formation of flavor sulfur compounds. Using an enzymatic screen with a library of pure compounds, we identified several inhibitors able to reduce the C-S lyase activity of FnaPatB1 in vitro, which paves the way for controlling the release of odorant sulfur compounds from their cysteine precursors in the oral cavity.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Karine Gourrat
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
- PROBE Research Infrastructure, Chemosens Facility, F-21000 Dijon, France
| | - Francis Canon
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| | - Mathieu Schwartz
- Centre for Taste and Feeding Behavior (CSGA), INRAE, CNRS, University of Burgundy-Franche Comté, Institut Agro, F-21000 Dijon, France
| |
Collapse
|
27
|
Río Segade S, Škrab D, Pezzuto E, Paissoni MA, Giacosa S, Rolle L. Isomer composition of aroma compounds as a promising approach for wine characterization and differentiation: A review. Crit Rev Food Sci Nutr 2022; 64:334-353. [PMID: 35930430 DOI: 10.1080/10408398.2022.2106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The perceived aroma is the result of the presence of volatile organic compounds (VOCs) as well as the interaction among them and with the nonvolatile sample matrix. These compounds can derive from grape berries (varietal) and also be formed during winemaking and aging processes. Varietal VOCs are strongly influenced by the grape variety, ripening, and geographical origin. Therefore, they were proposed as markers for wine discrimination. Nevertheless, recent studies highlighted the higher discriminating ability of VOC isomer forms. In this review the potential and importance of VOC isomers for terpenes, C13-norisoprenoids, C6-alcohols, thiols, lactones, and fatty acid esters, as well as isomeric relationships for wine characterization and differentiation have been described to get a full view of possible applications for the wine industry, highlighting potentialities and limitations. VOC isomers can be of paramount relevance to find reliable markers for wine authenticity and fraud prevention, regarding variety and geographical origin. Each isomer form owns a different olfactory threshold, influencing strongly wine sensory characteristics. Certain oenological treatments during winemaking and aging were found to modify the isomeric profile, particularly yeasts, aging, and wood in contact with wine. Nevertheless, this research field has potential and new research advances are expected in this field.
Collapse
Affiliation(s)
- Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Domen Škrab
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Enrico Pezzuto
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | | | - Simone Giacosa
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
28
|
Kaya O, Incesu M, Ates F, Keskin N, Verdugo-Vásquez N, Gutiérrez-Gamboa G. Study of Volatile Organic Compounds of Two Table Grapes (cv. Italia and Bronx Seedless) along Ripening in Vines Established in the Aegean Region (Turkey). PLANTS 2022; 11:plants11151935. [PMID: 35893640 PMCID: PMC9329889 DOI: 10.3390/plants11151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Italia is a seeded grape variety widely cultivated in the Aegean Region in Turkey, whereas Bronx Seedless is a seedless grape variety, preferred by consumers due to its pink berries and interesting flavor. The goal was to study the volatile compounds of these table grapes throughout berry ripeness. (2) Methods: The volatile compounds were analyzed by GC-MS in six different phenological stages (3) Results: Bronx Seedless grapes presented a higher content of seven terpenes, three aldehydes, one fatty acid, three alcohols, one C6 compound, total aldehydes and total alcohols, and a lower content of eleven terpenes, one fatty acid, four esters, one alcohol, four C6 compounds and its total content than Italia table grapes. The concentration of most of the volatile compounds analyzed increased from “begin of berry touch” to “berries ripe for harvest” stages. Terpenes content in both varieties at harvest was lower than 1.0 mg L−1. β-ionone presented the highest odor activity value (OAV) in both varieties. Bronx Seedless grapes presented higher OAV for (Z)-3-hexenal and cedrol, and lower hexanal to (E)-2-hexenal ratio than Italia grapes. (4) Conclusions: Both varieties could be classified as neutral aromatical varieties and it is probable that to achieve a better aromatic quality, Bronx Seedless should be harvested later than Italia.
Collapse
Affiliation(s)
- Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan 24060, Turkey
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| | - Melek Incesu
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25100, Turkey;
| | - Fadime Ates
- Manisa Viticulture Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Manisa 45125, Turkey;
| | - Nurhan Keskin
- Faculty of Agriculture, Department of Horticulture, Van Yüzüncü Yıl University, Van 65090, Turkey;
| | - Nicolás Verdugo-Vásquez
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile;
| | - Gastón Gutiérrez-Gamboa
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| |
Collapse
|
29
|
Abstract
Due to marketing recommendations, white wines are often bottled in flint glass to improve aesthetics and showcase wine color. Although this practice is known to cause a wine fault, the influence of light on the fruity and flowery aromatic profile of wine is unknown. The aim of this study was to investigate the changes to the white wine volatilome under typical supermarket shelf conditions, using 1,052 bottles of 24 white wines. After only 7 d of shelf life in flint glass bottles, a dramatic loss in terpenes (10 to 30%) and norisoprenoids (30 to 70%) was recorded, whereas colored glass bottles did not evidence such behavior even after 50 d, and darkness preserved the wine's fruity and flowery aromatic integrity. We also proposed an alternative mechanism for the insurgence of the lightstrike off-odor, which takes the varietal aroma loss into account. In light of this understanding of the flint glass negative impact on white wine aroma identity and sensorial character, this packaging should be strongly discouraged. The same findings should be valid for a wide range of several daily consumed foodstuff where transparent packaging is used.
Collapse
|
30
|
Karabegović I, Malićanin M, Popović N, Stamenković Stojanović S, Lazić M, Stanojević J, Danilović B. Native Non- Saccharomyces Yeasts as a Tool to Produce Distinctive and Diverse Tamjanika Grape Wines. Foods 2022; 11:foods11131935. [PMID: 35804749 PMCID: PMC9266009 DOI: 10.3390/foods11131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The enological potential of two previously characterized indigenous yeast isolates, Hanseniaspora uvarum S-2 and Candida famata WB-1, in pure and sequential inoculation with commercial yeast Saccharomyces cerevisiae QA23 were analyzed in industrial-scale vinification of the grape variety Tamjanika. Their contribution to the quality and aroma profile was investigated by quantifying volatile compounds and wine sensory evaluation. Both yeast isolates were able to complete alcoholic fermentation, to reduce ethanol concentration up to 1.06% v/v (in monoculture) in comparation to S. cerevisiae QA23, and to enhance aroma and sensory profile. Based on calculated odor activity values (OAV), p-cymene, ethyl hexanoate, ethyl octanoate, and ethyl decanoate were the major aroma volatile compounds in all Tamjanika wine samples. Analyzed yeast strains significantly affected relative contribution of volatile compounds and can be considered responsible for the differences and uniqueness of the obtained wine samples. Besides confirmation of good enological and fermentative characteristics, selected isolates can be characterized as high ester-producing strains with potential to enhance the floral and fruity aromas of wine. The present study represents a further step toward the use of indigenous yeast isolates at industrial-scale fermentation in order to ensure the regional signature of Tamjanika wine.
Collapse
Affiliation(s)
- Ivana Karabegović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
- Correspondence:
| | - Marko Malićanin
- Faculty of Agriculture, University of Niš, Kosančićeva 4, 37000 Kruševac, Serbia;
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Sandra Stamenković Stojanović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Miodrag Lazić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Jelena Stanojević
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; (S.S.S.); (M.L.); (J.S.); (B.D.)
| |
Collapse
|
31
|
Gehlken J, Pour Nikfardjam M, Zörb C. Determination of aroma compounds in grape mash under conditions of tasting by on-line near-infrared spectroscopy. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe production of high-quality wines requires the use of high-quality grapes. Tasting represents a widespread method for the determination of grape maturity and quality aspects such as the corresponding aroma profile. However, sensory analysis always remains subjective and it is not possible to judge only aroma compounds because the overall impression is also influenced by main components (e.g. sugars and acids). In contrast, the use of near-infrared (NIR) spectroscopy allows the simultaneous determination of various compounds without being affected by personal preferences. In this study, grape mash samples were examined under comparable conditions to those in the mouth. Differences between grape mashes with varying phytosanitary status of the corresponding grapes as well as for different grape varieties were detected. The quantified concentrations of the detected aroma compounds were used to develop calibration models for determination by NIR spectroscopy. Using global calibration models, the single aroma compounds could be determined by NIR spectroscopy with accuracies reaching from R2C = 0.365 to R2C = 0.976. Separate calibration models for cultivation region and grape colour improved the prediction accuracy. Instrumental analysis cannot totally replace sensory evaluation, however, NIR spectroscopy has the potential to be used as an objective, additional method for the evaluation of grape aroma quality.
Collapse
|
32
|
Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non-wine Saccharomyces yeasts and bottle aging. Food Microbiol 2022; 104:103981. [DOI: 10.1016/j.fm.2022.103981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
33
|
Glycosidically bound volatile profiles of green and roasted coffee beans and aromatic potential of the spent coffee ground. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Xiang N, Xie H, Qin L, Wang M, Guo X, Zhang W. Effect of Climate on Volatile Metabolism in 'Red Globe' Grapes ( Vitis vinifera L.) during Fruit Development. Foods 2022; 11:foods11101435. [PMID: 35627003 PMCID: PMC9140514 DOI: 10.3390/foods11101435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
With unique flavor and nutritional value, grapes are popular for eating and for the byproducts obtained in their processing. This study cultivated a popular grape variety, ‘Red Globe’, in two regions with different climates to investigate the discrepancies in their volatiles in response to climate. Saccharides, organic acids and transcriptomic and volatile metabolic analyses were studied separately via GC-FID, RNA sequencing and GC-MS/MS methods during the development of grape berries. In total, 83 volatiles were determined in samples, with (E)-2-hexenal the most abundant. Fatty acid derivatives and terpenoids in grapes showed discrepancies in different climates, and some of them were correlated to specific transcription factors. VvWRKY22 was influenced by climate conditions and was relative to saccharide accumulation. MYB-related transcription factors (TFs) were highly correlated with volatiles that accumulated during fruit ripening, especially decanal. Terpenoids showed correlations with a gene module that contained ERFs and HSFs. The findings support the hypothesis that fruit maturity and volatile formations vary in grape berries under different climates. Moreover, specific TFs could participate in volatile accumulations. The given results not only serve to enrich theoretical knowledge on the regulatory mechanism of volatiles in grapes, but also provide guidance for enhancing grape flavor and aroma by modulating cultivational conditions.
Collapse
Affiliation(s)
- Nan Xiang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
| | - Hui Xie
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
| | - Liuwei Qin
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
| | - Min Wang
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
| | - Xinbo Guo
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (N.X.); (L.Q.)
- Correspondence: (X.G.); (W.Z.); Tel./Fax: +86-20-87113848 (X.G.); +86-991-4503409 (W.Z.)
| | - Wen Zhang
- Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.X.); (M.W.)
- Correspondence: (X.G.); (W.Z.); Tel./Fax: +86-20-87113848 (X.G.); +86-991-4503409 (W.Z.)
| |
Collapse
|
35
|
Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Delgado-López JM, Gil-Muñoz R. Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition. Molecules 2022; 27:molecules27092878. [PMID: 35566227 PMCID: PMC9102950 DOI: 10.3390/molecules27092878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.
Collapse
Affiliation(s)
- María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Diego Fernando Paladines-Quezada
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - José Ignacio Fernández-Fernández
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (J.M.D.-L.)
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (J.M.D.-L.)
| | - Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
- Correspondence:
| |
Collapse
|
36
|
Bottle Aging Affected Aromatic and Phenolic Wine Composition More than Yeast Starter Strains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Volatile and phenolic compounds play a key role in the sensory properties of wine, especially aroma and color. During fermentation, yeasts produce enzymes that affect the skin’s phenolic compounds extraction and synthesize some of the most important wine volatile compounds. Generally, selected yeasts of the Saccharomyces cerevisiae (Sc) strains are inoculated, which are responsible for carrying out the wine fermentation, enhancing and highlighting its sensory characteristics and contributing to help achieve the wine typicity, according to the winemaker’s criteria. After fermentation, all wines require aging in a bottle to modulate their composition and stability over time. Thus, four different Sc strains (Sc1–Sc4) were inoculated into tanks with Tempranillo grapes to carry out, in duplicate, their fermentation and subsequent aging in bottles (9 months), comparing the aromatic and phenolic composition between them. Results showed differences in the fermentation process (kinetic, ethanol yield), CI, TPI and content of alcohols, esters, anthocyanins, flavonols and flavanols in wines from the different Sc strains studied. Moreover, in the content in wines of most groups of aromas and phenols, except for total acetate esters and flavonols, aging in a bottle had more influence than the yeast strain used for fermentation.
Collapse
|
37
|
del Barrio Galán R, Bueno-Herrera M, de la Cuesta PL, Pérez-Magariño S. Volatile composition of Spanish red wines: effect of origin and aging time. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nine Saccharomyces strains, previously isolated from vineyards in Southern Brazil, were used as starter cultures in fermentations of Sauvignon Blanc (SB) must at laboratory scale, to study inter-strain differences in aroma profiles. The molecular profiles differentiated the following isolates from the reference strain (SC2048), which is typically used in wine production: 06CE, 11CE, 33CE, 01PP, 12M, 13PP, 26PP, 28AD, and 41PP. Under the same conditions, each of these strains produced different concentrations and combinations of metabolites, which significantly influenced the aroma of the fermented SB must. Volatile compounds such as octanoic acid, diethyl succinate, and ethyl lactate were associated with the strains 26PP, 41PP, 01PP, and 12M, while strains 33CE, 28AD, 13PP, and 06CE were associated with the production of ethyl acetate and 1-hexanol. Strain 06CE produced 592.87 ± 12.35 µg/L 1-hexanol. In addition, the olfactory activity values (OAVs; we considered only values >1) allowed us to evaluate the participation of each compound in the aroma of the final fermented SB. In conclusion, the selected wild strains are promising candidates for improving the regional characteristics of wine.
Collapse
|
39
|
Measurement of the Effect of Accelerated Aging on the Aromatic Compounds of Gewürztraminer and Teroldego Wines, Using a SPE-GC-MS/MS Protocol. Metabolites 2022; 12:metabo12020180. [PMID: 35208254 PMCID: PMC8876733 DOI: 10.3390/metabo12020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/10/2022] Open
Abstract
Knowing in detail how the white and red wine aroma compounds behave under various storage conditions and especially at high temperature is important in order to understand the changes occurring to their sensorial character during the shelf life. The initial aim of this work was to develop and validate a fast, modern, robust, and comprehensive protocol for the quantification of 64 primary, secondary, and tertiary volatile compounds by using solid-phase extraction (SPE) cartridges in sample preparation and fast GC-MS/MS (gas chromatography-tandem mass spectrometry assay) in analysis. The protocol was applied to a study of the behavior of seven Gewürztraminer and seven Teroldego wines stored in anoxia at 50 °C for 2.5 and 5 weeks. The results demonstrated a sharp decrease of the main linear terpenes linalool, geraniol, and nerol and the consequent increase of the cyclic ones, such as α-terpineol and 1,8-cineole; the increase of the C13-norisoprenoids 1,1,6,-trimethyl-1,2-dihydronapthalene (TDN), and β-damascenone and the C10 norisoprenoid safranal; the hydrolysis of acetates and linear esters; and the increase of some branched-chain esters. In red wines, a moderate increase was observed for some lactones. Some unwanted compounds, such as 2-aminoacetophenone (2-AAP), showed a notable increase in some Gewürztraminer wines, exceeding the olfactory threshold.
Collapse
|
40
|
Ntuli RG, Saltman Y, Ponangi R, Jeffery DW, Bindon K, Wilkinson KL. Impact of fermentation temperature and grape solids content on the chemical composition and sensory profiles of Cabernet Sauvignon wines made from flash détente treated must fermented off-skins. Food Chem 2022; 369:130861. [PMID: 34469835 DOI: 10.1016/j.foodchem.2021.130861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
This study investigated the color, phenolic, polysaccharide, volatile and sensory profiles of Cabernet Sauvignon wines made from flash détente (FD) treated musts fermented at different temperatures (16, 24 or 32 °C), with and without suspended grape solids. Low fermentation temperature and low solids content increased the concentration of esters, whereas the opposite conditions increased the concentration of fusel alcohols, polysaccharides and glycerol. Higher fermentation temperatures also increased linalool concentration independent of solids content. Traditional maceration fermentation conditions gave the highest concentration of fusel alcohols and 1-hexanol relative to FD treatments. Pre-fermentation removal of grape solids from FD juice created wines with increased red fruit and confectionery attributes, whereas inclusion of 3.5% grape solids increased dark fruit notes. In comparison, control wines had significantly higher green and savory attributes compared to wines from FD treatments. Research findings demonstrated the potential for FD to be used to create differentiated red wine styles.
Collapse
Affiliation(s)
- Richard G Ntuli
- E & J Gallo Winery, PO Box 1130, Modesto, CA 95353, USA; Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Yaelle Saltman
- Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Ravi Ponangi
- E & J Gallo Winery, PO Box 1130, Modesto, CA 95353, USA
| | - David W Jeffery
- Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Keren Bindon
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia
| | - Kerry L Wilkinson
- Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
41
|
Sánchez R, Rodríguez-Nogales JM, Fernández-Fernández E, González MR, Medina-Trujillo L, Martín P. Volatile composition and sensory properties of wines from vineyards affected by iron chlorosis. Food Chem 2022; 369:130850. [PMID: 34461510 DOI: 10.1016/j.foodchem.2021.130850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have shown that mild to moderate iron chlorosis can have positive effects on grape quality potential, including volatile profile. The main objective of this work was to investigate, for the first time, how moderate iron stress in grapevines affects the presence of volatile organic compounds (VOCs) in wines. The study was carried out during 2018-2019 seasons, in 20 Tempranillo vineyard subzones with different degree of iron deficiency, located in Ribera del Duero (North-Central Spain). The results showed that moderate iron stress increased in wines the concentrations of VOCs associated with floral notes, such as 2-phenylacetaldehyde, 2-phenylethanol and 2-phenylethyl acetate, while reducing the presence of C6-alcohols, responsible for green-herbaceous aroma. A favourable reduction of pH and a betterment of parameters related to colour were detected in wines from iron deficient subzones. Chlorosis incidence was associated to improvements in wine sensory attributes as layer intensity, black fruit and aroma intensity.
Collapse
Affiliation(s)
- Ramón Sánchez
- Research Group on Viticulture and Enology (GIRVITEN), University of Valladolid, Av. de Madrid, 57, 34004 Palencia, Spain
| | - José Manuel Rodríguez-Nogales
- Research Group on Viticulture and Enology (GIRVITEN), University of Valladolid, Av. de Madrid, 57, 34004 Palencia, Spain.
| | | | - María Rosa González
- Research Group on Viticulture and Enology (GIRVITEN), University of Valladolid, Av. de Madrid, 57, 34004 Palencia, Spain
| | - Laura Medina-Trujillo
- Research Group on Viticulture and Enology (GIRVITEN), University of Valladolid, Av. de Madrid, 57, 34004 Palencia, Spain
| | - Pedro Martín
- Research Group on Viticulture and Enology (GIRVITEN), University of Valladolid, Av. de Madrid, 57, 34004 Palencia, Spain
| |
Collapse
|
42
|
Santos H, Augusto C, Reis P, Rego C, Figueiredo AC, Fortes AM. Volatile Metabolism of Wine Grape Trincadeira: Impact of Infection with Botrytis cinerea. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11010141. [PMID: 35009143 PMCID: PMC8747702 DOI: 10.3390/plants11010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 05/27/2023]
Abstract
The aroma of grapes is cultivar dependent and is influenced by terroir, vineyard practices, and abiotic and biotic stresses. Trincadeira is a non-aromatic variety associated with low phenolic content and high sugar and organic acid levels. This cultivar, widely used in Portuguese wines, presents high susceptibility to Botrytis cinerea. This work aimed to characterise the volatile profile of Trincadeira grapes and how it changes under infection with B. cinerea. Thirty-six volatile organic compounds were identified, from different functional groups, namely alcohols, ester acetates, fatty acid esters, fatty acids, aldehydes, and products of the lipoxygenase pathway. Both free and glycosidic volatile organic compounds were analysed by Gas Chromatography and Gas Chromatography coupled to Mass Spectrometry for component quantification and identification, respectively. A multivariance analysis showed a clear discrimination between healthy and infected grapes with 2-trans-hexenal and isoamyl-acetate among the compounds identified as negative and positive markers of infection, respectively. Ester acetates such as 2-phenylethyl acetate, isoamyl acetate, and 2-methylbutyl acetate were present in higher contents in infected samples, whereas the contents of several fatty acid esters, such as ethyl decanoate and ethyl dodecanoate, decreased. These data were integrated with quantitative PCR data regarding genes involved in volatile metabolism and showed up-regulation of a gene coding for Hydroperoxide Lyase 2 in infected grapes. Altogether, these changes in volatile metabolism indicate an impact on the grape quality and may be related to defence against B. cinerea. The presence/absence of specific compounds might be used as infection biomarkers in the assessment of Trincadeira grapes' quality.
Collapse
Affiliation(s)
- Helena Santos
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| | - Catarina Augusto
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (P.R.); (C.R.)
| | - Cecília Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (P.R.); (C.R.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Ana Margarida Fortes
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| |
Collapse
|
43
|
Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. Int J Food Microbiol 2022; 365:109554. [DOI: 10.1016/j.ijfoodmicro.2022.109554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
|
44
|
Abstract
The fragrance field of perfumes has attracted considerable scientific, industrial, cultural, and civilizational interest. The marine odor is characterized by the specific smell of sea breeze, seashore, algae, and oyster, among others. Marine odor is a more recent fragrance and is considered as one of the green and modern fragrances. The smells reproducing the marine environment are described due to their content of Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one), which is a synthetic compound. In addition to the synthetic group of benzodioxepanes, such as Calone 51 and its derivatives, three other groups of chemical compounds seem to represent the marine smell. The first group includes the polyunsaturated cyclic ((+)-Dictyopterene A) and acyclic (giffordene) hydrocarbons, acting as pheromones. The second group corresponds to polyunsaturated aldehydes, such as the (Z,Z)-3,6-nonadienal, (E,Z)-2,6-nonadienal, which are most likely derived from the degradation of polyunsaturated fatty acids. The third group is represented by small molecules such as sulfur compounds and halogenated phenols which are regarded as the main flavor compounds of many types of seafood. This review exposes, most notably, the knowledge state on the occurrence of marine ingredients in fragrance. We also provide a detailed discussion on several aspects of essential oils, which are the most natural ingredients from various marine sources used in fragrance and cosmetics, including synthetic and natural marine ingredients.
Collapse
|
45
|
Varietal Aromas of Fortified Wines from Different Moscato Var. ( Vitis vinifera L.) under the Same Pedoclimatic Conditions. Foods 2021; 10:foods10112549. [PMID: 34828829 PMCID: PMC8622996 DOI: 10.3390/foods10112549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Vitis vinifera L. cv. Moscato includes different varieties mainly used to produce sweet wines, such as fortified wines. Moscato grapes are characterized by a large number of free and glycosylated monoterpenoids giving very aromatic wines. However, the literature data on the aroma profile of fortified Moscato wines are very limited. In light of this, the present research aimed to investigate the aroma compounds, mainly the varietal ones, of fortified wines from different Moscato varieties, namely Giallo (Yellow), Bianco (White), Bianco at Petit Grain (Blanc à Petits Grains), Ottonel and Rosa (Pink of Trentino), cultivated under the same pedoclimatic conditions. Using the HS-SPME-GC-MS (head space-solid phase micro extraction-gas chromatography-mass spectrometry) technique, numerous varietal and fermentative aroma compounds have been identified and quantified and significant differences were observed among varieties in the levels of mostly volatiles and in their ratios. Based on their composition, the studied wines can be divided in two groups depending on whether linalool or geraniol prevails among varietal aromas. These results are evidence that each Moscato variety has a typical varietal aroma composition, even if some similarities were found between the two white varieties, and between Moscato Giallo and Moscato Ottonel varieties. Moscato Rosa showed a peculiar aroma composition and the lowest ester/terpene ratio.
Collapse
|
46
|
Diez-Ozaeta I, Lavilla M, Amárita F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: selection of potential malolactic starters. Int J Food Microbiol 2021; 356:109324. [PMID: 34474175 DOI: 10.1016/j.ijfoodmicro.2021.109324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Previously six selected Oenococcus oeni strains (P2A, P3A, P3G, P5A, P5C and P7B) have been submitted to further characterization in order to clarify their potential as malolactic starters. Laboratory scale vinifications gave an insight of the most vigorous strains: both P2A and P3A strains were able to conclude malolactic fermentation (MLF) in less than 15 days. The remaining strains showed good viability and were able to successfully finish MLF in the established analysis time, except for the strain P5A, which viability was totally lost after inoculation. Also spontaneous fermentation was not initiated. None of the strains was biogenic amine producer; however, P5C strain significantly increased the concentration of volatile phenol-precursor hydroxycinnamic acids after MLF. Regarding the evolution of wine aromatic compounds, main changes were detected for both ethyl and acetate esters after MLF; however, key aromatic compounds including alcohols, terpenes or acids were also found to significantly increase. Principal component analysis classified the strains in two distinct groups, each one correlated with different key volatile compounds. P2A, P3A, P3G and P5C strains were mainly linked to esters, while P7B and the commercial strain Viniflora OENOS showed higher score for diverse compounds as hexanoic acid, β-damascenone, linalool or 2-phenylethanol. These results confirmed the specific impact of each strain on wine aroma profile, which could lead to the production of wines with individual characteristics, in which the reliability and safety of MLF is also ensured.
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| | - María Lavilla
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| | - Félix Amárita
- AZTI, Food Research, Basque Research & Technology Alliance (BRTA), Astondo Bidea 609, 48160 Derio, Spain.
| |
Collapse
|
47
|
Wine Storage at Cellar vs. Room Conditions: Changes in the Aroma Composition of Riesling Wine. Molecules 2021; 26:molecules26206256. [PMID: 34684839 PMCID: PMC8540336 DOI: 10.3390/molecules26206256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Storage temperature is one of the most important factors affecting wine aging. Along with bottling parameters (type of stopper, SO2 level and dissolved O2 in wine), they determine how fast wine will evolve, reach its optimum and decline in sensory quality. At the same time, lowering of the SO2 level in wine has been a hot topic in recent years. In the current work, we investigated how Riesling wine evolved on the molecular level in warm (~25 °C) and cool (~15 °C) conditions depending on the SO2 level in the wine (low, medium and high), flushing of the bottle's headspace with CO2 and three types of stoppers (Diam 30, Diam 30 origin and Diam 5) with different OIR levels (0.8-1.3 mg) and OTR levels (0.3-0.4 mg/year). It was demonstrated that the evolution of primary and secondary aromas, wine color and low molecular weight sulfur compounds (LMWSCs) during the two years of aging mainly depended on the storage temperature. Variation in the SO2 level and CO2 in the headspace affected mostly certain LMWSCs (H2S, MeSH) and β-damascenone. New aspects of C13-norisprenoids and monoterpenoids behavior in Riesling wine with different levels of SO2 and O2 were discussed. All three types of stoppers showed very close wine preservation properties during the two years of storage. The sensory analysis revealed that, after only six months, the warm stored wines with a low SO2 level were more oxidized and different from the samples with medium and high SO2 levels. A similar tendency was also observed for the cool stored samples.
Collapse
|
48
|
Awale M, Liu C, Kwasniewski MT. Workflow to Investigate Subtle Differences in Wine Volatile Metabolome Induced by Different Root Systems and Irrigation Regimes. Molecules 2021; 26:molecules26196010. [PMID: 34641553 PMCID: PMC8512433 DOI: 10.3390/molecules26196010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
To allow for a broad survey of subtle metabolic shifts in wine caused by rootstock and irrigation, an integrated metabolomics-based workflow followed by quantitation was developed. This workflow was particularly useful when applied to a poorly studied red grape variety cv. Chambourcin. Allowing volatile metabolites that otherwise may have been missed with a targeted analysis to be included, this approach allowed deeper modeling of treatment differences which then could be used to identify important compounds. Wines produced on a per vine basis, over two years, were analyzed using SPME-GC-MS/MS. From the 382 and 221 features that differed significantly among rootstocks in 2017 and 2018, respectively, we tentatively identified 94 compounds by library search and retention index, with 22 confirmed and quantified using authentic standards. Own-rooted Chambourcin differed from other root systems for multiple volatile compounds with fewer differences among grafted vines. For example, the average concentration of β-Damascenone present in own-rooted vines (9.49 µg/L) was significantly lower in other rootstocks (8.59 µg/L), whereas mean Linalool was significantly higher in 1103P rootstock compared to own-rooted. β-Damascenone was higher in regulated deficit irrigation (RDI) than other treatments. The approach outlined not only was shown to be useful for scientific investigation, but also in creating a protocol for analysis that would ensure differences of interest to the industry are not missed.
Collapse
Affiliation(s)
- Mani Awale
- Division of Plant Sciences, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Department of Food Sciences, The Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
| | - Connie Liu
- Food Science Department, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
| | - Misha T. Kwasniewski
- Division of Plant Sciences, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Department of Food Sciences, The Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
- Food Science Department, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-814-865-6842
| |
Collapse
|
49
|
Schwartz M, Canon F, Feron G, Neiers F, Gamero A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021; 10:2006. [PMID: 34574116 PMCID: PMC8467474 DOI: 10.3390/foods10092006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Flavor perception during food intake is one of the main drivers of food acceptability and consumption. Recent studies have pointed to the oral microbiota as an important factor modulating flavor perception. This review introduces general characteristics of the oral microbiota, factors potentially influencing its composition, as well as known relationships between oral microbiota and chemosensory perception. We also review diverse evidenced mechanisms enabling the modulation of chemosensory perception by the microbiota. They include modulation of the chemosensory receptors activation by microbial metabolites but also modification of receptors expression. Specific enzymatic reactions catalyzed by oral microorganisms generate fragrant molecules from aroma precursors in the mouth. Interestingly, these reactions also occur during the processing of fermented beverages, such as wine and beer. In this context, two groups of aroma precursors are presented and discussed, namely, glycoside conjugates and cysteine conjugates, which can generate aroma compounds both in fermented beverages and in the mouth. The two entailed families of enzymes, i.e., glycosidases and carbon-sulfur lyases, appear to be promising targets to understand the complexity of flavor perception in the mouth as well as potential biotechnological tools for flavor enhancement or production of specific flavor compounds.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Francis Canon
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Gilles Feron
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Fabrice Neiers
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Amparo Gamero
- Department Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
50
|
Balmaseda A, Rozès N, Bordons A, Reguant C. Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|