1
|
Ramachandran DU, Gummadi SN. Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies. Int J Biol Macromol 2025; 297:139604. [PMID: 39788269 DOI: 10.1016/j.ijbiomac.2025.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored. Circular Dichroism studies reveal that Ca-Est follows heat-induced irreversible unfolding. The melting temperature of the enzyme varied with different scan rates implying that the irreversible unfolding is kinetically controlled. At higher temperatures, unfolding of the protein resulted in the formation of aggregates which possibly prevented it from refolding back to its native structure. Intriguingly, at lower temperatures, where non aggregated states were present, unfolded Ca-Est did not refold back to the native structure, rather there was an increase in the percentage of beta sheets implying that the irreversibility could be due to an incorrect folding of the unfolded states which consecutively results in higher probability of forming aggregates. Future studies focusing on strategies to improve the reversibility would enhance the functionality of Ca-Est.
Collapse
Affiliation(s)
- Devasena Umai Ramachandran
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Adıgüzel AO, Şen F, Könen-Adıgüzel S, Kıdeyş AE, Karahan A, Doruk T, Tunçer M. Identification of Cutinolytic Esterase from Microplastic-Associated Microbiota Using Functional Metagenomics and Its Plastic Degrading Potential. Mol Biotechnol 2024; 66:2995-3012. [PMID: 37815749 DOI: 10.1007/s12033-023-00916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Plastic pollution has threatened biodiversity and human health by shrinking habitats, reducing food quality, and limiting the activities of organisms. Therefore, global interest in discovering novel enzymes capable of degrading plastics has increased considerably. Within this context, the functional metagenomic approach, which allows for unlocking the functional potential of uncultivable microbial biodiversity, was used to discover a plastic-degrading enzyme. First, metagenomic libraries derived from microplastic-associated microbiota were screened for esterases capable of degrading both tributyrin and polycaprolactone. Clone KAD01 produced esterase highly active against p-nitrophenyl esters (C2-C16). The gene corresponding to the enzyme activity showed moderate identity (≤ 55.94%) to any known esterases/cutinases. The gene was extracellularly expressed with a 6× histidine tag in E. coli BL21(DE3), extracellularly. Titer of the enzyme (CEstKAD01) was raised from 21.32 to 35.17 U/mL by the statistical optimization of expression conditions and media components. CEstKAD01 was most active at pH 7.0 and 30 °C. It was noteworthy stable over a wide pH (6.0-10.0) and temperature (20-50 °C). The enzyme was active and stable in elevated NaCl concentrations up to 12% (w/v). Pre-incubation of CEstKAD01 with Mg2+, Mn2+, and Ca2+ increased the enzyme activity. CEstKAD01 displayed an excellent tolerance against various chemicals and solvents. It was determined that 1 mg of the enzyme caused the release of 5.39 ± 0.18 mM fatty acids from 1 g apple cutin in 120 min. Km and Vmax values of CEstKAD01 against p-nitrophenyl butyrate were calculated to be 1.48 mM and 20.37 µmol/min, respectively. The enzyme caused 6.94 ± 0.55, 8.71 ± 0.56, 7.47 ± 0.47, and 9.22 ± 0.18% of weight loss in polystyrene, high-density polyethylene, low-density polyethylene, and polyvinyl chloride after 30-day incubation. The scanning electron microscopy (SEM) analysis indicated the formation of holes and pits on the plastic surfaces supporting the degradation. In addition, the change in chemical structure in plastics treated with the enzyme was determined by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Finally, the degradation products were found to have no genotoxic potential. To our knowledge, no cutinolytic esterase with the potential to degrade polystyrene (PS), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyvinyl chloride (PVC) has been identified from metagenomes derived from microplastic-associated microbiota.
Collapse
Affiliation(s)
- Ali Osman Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, 55000, Turkey.
| | - Fatma Şen
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, 55000, Turkey
| | | | - Ahmet Erkan Kıdeyş
- Department of Marine Biology and Fisheries, Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Arzu Karahan
- Department of Marine Biology and Fisheries, Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Tuğrul Doruk
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, 55000, Turkey
| | - Münir Tunçer
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, 55000, Turkey
| |
Collapse
|
3
|
Zhang Y, Gao Y, Chen J, Yu F, Bao Y. Overexpression and truncation of a novel cold-adapted lipase with improved enzymatic characteristics. Protein Expr Purif 2024; 214:106376. [PMID: 37839629 DOI: 10.1016/j.pep.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The novel cold-adapted lipase (Lip ZC12) derived from Psychrobacter sp. ZY124 exhibited higher catalytic activity at 20-40 °C, the whole gene was then sequenced, analyzed, and overexpressed. However, its intrinsic structural characteristics lead to a decreased affinity toward the substrate, thus limiting the improvement of catalytic efficiency. Modeling the homologous structure and simulating the binding process of Lip ZC12 with the substrate. It was found that truncated lid (lip-Δlid) could not only increase the kcat, but also significantly enhance the substrate affinity, the substrate affinity and catalytic efficiency of Lip ZC12 modified by lid truncation were significantly improved. The results revealed that the kcat/Km value of lip-Δlid was 1.6 times higher than that of free lipase. This improved catalytic performance of cold-adapted lipase, and these findings laid an important foundation for further application.
Collapse
Affiliation(s)
- Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yu Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiahui Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Kuan JE, Tsai CH, Chou CC, Wu C, Wu WF. Enzymatic Characterization of a Novel HSL Family IV Esterase EstD04 from Pseudomonas sp. D01 in Mealworm Gut Microbiota. Molecules 2023; 28:5410. [PMID: 37513282 PMCID: PMC10385968 DOI: 10.3390/molecules28145410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.
Collapse
Affiliation(s)
- Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Chi Chou
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Yang Z, Huang Z, Wu Q, Tang X, Huang Z. Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. Int J Mol Sci 2023; 24:ijms24108532. [PMID: 37239878 DOI: 10.3390/ijms24108532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The modern biotechnology industry has a demand for macromolecules that can function in extreme environments. One example is cold-adapted proteases, possessing advantages such as maintaining high catalytic efficiency at low temperature and low energy input during production and inactivation. Meanwhile, cold-adapted proteases are characterised by sustainability, environmental protection, and energy conservation; therefore, they hold significant economic and ecological value regarding resource utilisation and the global biogeochemical cycle. Recently, the development and application of cold-adapted proteases have gained gaining increasing attention; however, their applications potential has not yet been fully developed, which has seriously restricted the promotion and application of cold-adapted proteases in the industry. This article introduces the source, related enzymology characteristics, cold resistance mechanism, and the structure-function relationship of cold-adapted proteases in detail. This is in addition to discussing related biotechnologies to improve stability, emphasise application potential in clinical medical research, and the constraints of the further developing of cold-adapted proteases. This article provides a reference for future research and the development of cold-adapted proteases.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
| | - Zhendi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Xianghua Tang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Zunxi Huang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650000, China
| |
Collapse
|
6
|
Liu X, Zhou M, Xing S, Wu T, He H, Bielicki JK, Chen J. Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15. Biomolecules 2021; 11:1552. [PMID: 34827549 PMCID: PMC8615396 DOI: 10.3390/biom11111552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Esterases represent an important class of enzymes with a wide variety of industrial applications. A novel hormone-sensitive lipase (HSL) family esterase, Est19, from the Antarctic bacterium Pseudomonas sp. E2-15 is identified, cloned, and expressed. The enzyme possesses a GESAG motif containing an active serine (S) located within a highly conserved catalytic triad of Ser155, Asp253, and His282 residues. The catalytic efficiency (kcat/Km) of Est19 for the pNPC6 substrate is 148.68 s-1mM-1 at 40 °C. Replacing Glu154 juxtaposed to the critical catalytic serine with Asp (E154→D substitution) reduced the activity and catalytic efficiency of the enzyme two-fold, with little change in the substrate affinity. The wild-type enzyme retained near complete activity over a temperature range of 10-60 °C, while ~50% of its activity was retained at 0 °C. A phylogenetic analysis suggested that Est19 and its homologs may represent a new subfamily of HSL. The thermal stability and stereo-specificity suggest that the Est19 esterase may be useful for cold and chiral catalyses.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China;
| | | | - Jianbin Chen
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| |
Collapse
|
7
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
8
|
Varliero G, Rafiq M, Singh S, Summerfield A, Sgouridis F, Cowan DA, Barker G. Microbial characterisation and Cold-Adapted Predicted Protein (CAPP) database construction from the active layer of Greenland's permafrost. FEMS Microbiol Ecol 2021; 97:fiab127. [PMID: 34468725 PMCID: PMC8445667 DOI: 10.1093/femsec/fiab127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Permafrost represents a reservoir for the biodiscovery of cold-adapted proteins which are advantageous in industrial and medical settings. Comparisons between different thermo-adapted proteins can give important information for cold-adaptation bioengineering. We collected permafrost active layer samples from 34 points along a proglacial transect in southwest Greenland. We obtained a deep read coverage assembly (>164x) from nanopore and Illumina sequences for the purposes of i) analysing metagenomic and metatranscriptomic trends of the microbial community of this area, and ii) creating the Cold-Adapted Predicted Protein (CAPP) database. The community showed a similar taxonomic composition in all samples along the transect, with a solid permafrost-shaped community, rather than microbial trends typical of proglacial systems. We retrieved 69 high- and medium-quality metagenome-assembled clusters, 213 complete biosynthetic gene clusters and more than three million predicted proteins. The latter constitute the CAPP database that can provide cold-adapted protein sequence information for protein- and taxon-focused amino acid sequence modifications for the future bioengineering of cold-adapted enzymes. As an example, we focused on the enzyme polyphenol oxidase, and demonstrated how sequence variation information could inform its protein engineering.
Collapse
Affiliation(s)
- Gilda Varliero
- School of Life Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences 2 Building, Private Bag X20, Hatfield 0028, South Africa
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Airport Road, Baleli, Quetta, Balochistan, Pakistan
- School of Geographical Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RL, United Kingdom
| | - Swati Singh
- School of Life Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, Cantock's Cl, Bristol BS8 1TS, United Kingdom
| | - Annabel Summerfield
- School of Life Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RL, United Kingdom
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Natural Sciences 2 Building, Private Bag X20, Hatfield 0028, South Africa
| | - Gary Barker
- School of Life Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
9
|
Li L, Li W, Gong J, Xu Y, Wu Z, Jiang Z, Cheng YS, Li Q, Ni H. An effective computational-screening strategy for simultaneously improving both catalytic activity and thermostability of α-l-rhamnosidase. Biotechnol Bioeng 2021; 118:3409-3419. [PMID: 33742693 DOI: 10.1002/bit.27758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Wenjing Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yanyan Xu
- Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Zheyu Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
10
|
Boyko KM, Kryukova MV, Petrovskaya LE, Kryukova EA, Nikolaeva AY, Korzhenevsky DA, Lomakina GY, Novototskaya-Vlasova KA, Rivkina EM, Dolgikh DA, Kirpichnikov MP, Popov VO. Structural and Biochemical Characterization of a Cold-Active PMGL3 Esterase with Unusual Oligomeric Structure. Biomolecules 2021; 11:biom11010057. [PMID: 33466452 PMCID: PMC7824956 DOI: 10.3390/biom11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/β hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%.
Collapse
Affiliation(s)
- Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Correspondence: (K.M.B.); (L.E.P.)
| | - Mariya V. Kryukova
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Lada E. Petrovskaya
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Correspondence: (K.M.B.); (L.E.P.)
| | - Elena A. Kryukova
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
| | - Alena Y. Nikolaeva
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Dmitry A. Korzhenevsky
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Galina Yu. Lomakina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ksenia A. Novototskaya-Vlasova
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Elizaveta M. Rivkina
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| |
Collapse
|
11
|
Kumar A, Mukhia S, Kumar N, Acharya V, Kumar S, Kumar R. A Broad Temperature Active Lipase Purified From a Psychrotrophic Bacterium of Sikkim Himalaya With Potential Application in Detergent Formulation. Front Bioeng Biotechnol 2020; 8:642. [PMID: 32671041 PMCID: PMC7329984 DOI: 10.3389/fbioe.2020.00642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial lipases with activity spanning over a broad temperature and substrate range have several industrial applications. An efficient enzyme-producing bacterium Chryseobacterium polytrichastri ERMR1:04, previously reported from Sikkim Himalaya, was explored for purification and characterization of cold-adapted lipase. Optimum lipase production was observed in 1% (v/v) rice bran oil, pH 7 at 20°C. Size exclusion and hydrophobic interaction chromatography purified the enzyme up to 21.3-fold predicting it to be a hexameric protein of 250 kDa, with 39.8 kDa monomeric unit. MALDI-TOF-MS analysis of the purified lipase showed maximum similarity with alpha/beta hydrolase (lipase superfamily). Biochemical characterization of the purified enzyme revealed optimum pH (8.0), temperature (37°C) and activity over a temperature range of 5–65°C. The tested metals (except Cu2+ and Fe2+) enhanced the enzyme activity and it was tolerant to 5% (v/v) methanol and isopropanol. The Km and Vmax values were determined as 0.104 mM and 3.58 U/mg, respectively for p-nitrophenyl palmitate. Bioinformatics analysis also supported in vitro findings by predicting enzyme's broad temperature and substrate specificity. The compatibility of the purified lipase with regular commercial detergents, coupled with its versatile temperature and substrate range, renders the given enzyme a promising biocatalyst for potential detergent formulations.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Neeraj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|