1
|
Venkatesan K, Venkatesan S, Manivannan N. Antibacterial Activity of Hibiscus sabdariffa (Rosella) Using Methanolic Extract. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1191-S1194. [PMID: 38882855 PMCID: PMC11174337 DOI: 10.4103/jpbs.jpbs_527_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 06/18/2024] Open
Abstract
Hibiscus sabdariffa L. (Rosella) has a long history of use in food preparation, herbal remedies, hot and cold beverages, food industry flavoring, and herbal drinks. More than 300 species of Hibiscus are grown all over the world. It is an annual herbaceous shrub belonging to the family Malvacea. However, limited is known about the antimicrobial properties of H. sabdariffa; the purpose of this study was to investigate the antimicrobial activity of H. sabdariffa (Rosella) extract against a range of pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The results of the study showed that H. sabdariffa (Rosella) extract had a significant antimicrobial effect, against S. aureus and E. coli. Further the minimum inhibitory concentration (MIC) shows 128 μg/mL concentration followed by E. coli 256 μg/mL. The biocompatibility of crude metabolites shows highly compatible with Red blood cells (RBC's). This finding suggests that the crude metabolites of H. sabdariffa (Rosella) could be the source to control the human pathogens.
Collapse
Affiliation(s)
- Keerthika Venkatesan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - Santhosh Venkatesan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| | - N Manivannan
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Rapún-Araiz B, Sorzabal-Bellido I, Asensio-López J, Lázaro-Díez M, Ariz M, Sobejano de la Merced C, Euba B, Fernández-Calvet A, Cortés-Domínguez I, Burgui S, Toledo-Arana A, Ortiz-de-Solórzano C, Garmendia J. In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling. Microbiol Spectr 2023; 11:e0099323. [PMID: 37795992 PMCID: PMC10714817 DOI: 10.1128/spectrum.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.
Collapse
Grants
- RTI2018-094494-B-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PDI2021-122409OB-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- RTI2018-096369-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PID2021-125947OB-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- 875/2019 Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
- PC150 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC136 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC151 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC137 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
Collapse
Affiliation(s)
- Beatriz Rapún-Araiz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ioritz Sorzabal-Bellido
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Mikel Ariz
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Carlos Sobejano de la Merced
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Ivan Cortés-Domínguez
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Carlos Ortiz-de-Solórzano
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
3
|
Euba B, Gil-Campillo C, Asensio-López J, López-López N, Sen-Kilic E, Díez-Martínez R, Burgui S, Barbier M, Garmendia J. In Vivo Genome-Wide Gene Expression Profiling Reveals That Haemophilus influenzae Purine Synthesis Pathway Benefits Its Infectivity within the Airways. Microbiol Spectr 2023; 11:e0082323. [PMID: 37195232 PMCID: PMC10269889 DOI: 10.1128/spectrum.00823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.
Collapse
Affiliation(s)
- Begoña Euba
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emel Sen-Kilic
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Junkal Garmendia
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023; 28:molecules28010376. [PMID: 36615569 PMCID: PMC9824852 DOI: 10.3390/molecules28010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In response to stress factors, plants produce a wide range of biologically active substances, from a group of secondary metabolites, which are applied in medicine and health prophylaxis. Chitosan is a well-known elicitor affecting secondary metabolism in plants, but its effect on the phytochemical profile of Plectranthus amboinicus has not been assessed yet. In the present experiment, the effectiveness of the foliar application of two forms of chitosan (chitosan suspension or chitosan lactate) was compared in order to evaluate their potential to induce the accumulation of selected polyphenolic compounds in the aboveground parts of P. amboinicus. It was shown that chitosan lactate had substantially higher elicitation efficiency, as the use of this form exerted a beneficial effect on the analysed quality parameters of the raw material, especially the content of selected polyphenolic compounds (total content of polyphenols, flavonols, anthocyanins, and caffeic acid derivatives) and the free radical-scavenging activity of extracts from elicited plants. Concurrently, it had no phytotoxic effects. Hence, chitosan lactate-based elicitation can be an effective method for optimisation of the production of high-quality P. amboinicus raw material characterised by an increased concentration of health-promoting and antioxidant compounds.
Collapse
|
5
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
6
|
Zhang W, Zhu Q. Punicalagin suppresses inflammation in ventilator-induced lung injury through protease-activated receptor-2 inhibition-induced inhibition of NLR family pyrin domain containing-3 inflammasome activation. Chem Biol Drug Des 2022; 100:218-229. [PMID: 35434894 DOI: 10.1111/cbdd.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Punicalagin is recorded to be a potent anti-inflammatory drug, while its effect on inflammation existing in ventilator-induced lung injury (VILI) requires further verification. Rats were pretreated with punicalagin, followed by VILI modeling. Lung histopathological examination was performed with hematoxylin-eosin staining accompanied by the lung injury score. The lung wet/dry (W/D) weight ratio and total bronchoalveolar lavage fluid (BALF) protein level were measured. After transfection with protease-activated receptor-2 (PAR2) overexpression plasmids, mouse alveolar epithelial MLE-12 cells were treated with punicalagin and then subjected to cyclic stretching. Punicalagin's cytotoxicity to MLE-12 cells were measured by MTT assay. The levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6), PAR2, NLR family pyrin domain containing-3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in the BALF, lung tissues or cells were analyzed by enzyme-linked immune-sorbent assay (ELISA), qRT-PCR or/and western blot. Punicalagin treatment attenuated VILI-induced lung histopathological changes and counteracted VILI-induced increases in the lung injury score, W/D weight ratio and total protein level in BALF. Also, punicalagin treatment counteracted in vivo VILI/cyclic stretching-induced increases in the levels of PAR2, inflammatory cytokines, NLRP3, and ASC. PAR2 overexpression potentiated the cyclic stretching-induced effects, while punicalagin treatment revoked this PAR2 overexpression-induced potentiation effect. In turn, PAR2 overexpression partly resisted the punicalagin treatment-induced counteractive effects on the cyclic stretching-induced effects. Punicalagin suppresses inflammation in VILI through PAR2 inhibition-induced inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| | - Qi Zhu
- Emergency and Critical Care Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| |
Collapse
|
7
|
Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor. mSystems 2022; 7:e0145921. [PMID: 35293791 PMCID: PMC9040583 DOI: 10.1128/msystems.01459-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expediting drug discovery to fight antibacterial resistance requires holistic approaches at system levels. In this study, we focused on the human-adapted pathogen Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model, we rationally identified new metabolic drug targets in this organism. Contextualization of available gene essentiality data within in silico predictions identified most genes involved in lipid metabolism as promising targets. We focused on the β-ketoacyl-acyl carrier protein synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis pathway and feedback inhibition. Docking studies provided a plausible three-dimensional model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory effect was independent of fabH gene expression levels. fabH allelic variation was observed among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as part of a complex multifactorial process with the overall metabolic context emerging as a key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria were not prone to develop resistance. Inhibitor administration during H. influenzae infection on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity. Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets, metabolic models as target-screening tools, and FASII targeting suitability to counteract this bacterial infection. IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful computational tools and experimental work to accelerate target identification and drug development. Here, we present a high-quality metabolic model of H. influenzae and show its usefulness both as a computational framework for large experimental data set contextualization and as a tool to discover condition-independent drug targets. We focus on β-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic molecule with good synthetic and antimicrobial profiles that specifically binds to the active site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the strain-dependent effect of the inhibitor tested supports the impact of metabolic context as a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic metabolic evaluation of individual strains through computational frameworks to identify secondary metabolic hubs modulating drug response, which will facilitate establishing synergistic and/or more precise and robust antibacterial treatments.
Collapse
|
8
|
Dejani NN, Elshabrawy HA, Bezerra Filho CDSM, de Sousa DP. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021; 11:biom11081254. [PMID: 34439920 PMCID: PMC8394099 DOI: 10.3390/biom11081254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.
Collapse
Affiliation(s)
- Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Carlos da Silva Maia Bezerra Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
9
|
Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice. Molecules 2021; 26:molecules26030570. [PMID: 33499104 PMCID: PMC7865846 DOI: 10.3390/molecules26030570] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1β and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders.
Collapse
|
10
|
Carev I, Maravić A, Ilić N, Čikeš Čulić V, Politeo O, Zorić Z, Radan M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life (Basel) 2020; 10:life10070112. [PMID: 32674268 PMCID: PMC7399921 DOI: 10.3390/life10070112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Aqueous extracts of two Cistus species wild growing in Croatia-Cistus creticus (CC) and Cistus salviifolius (CS)-have been assessed with UPLC-MS/MS, showing 43 different phytochemicals, with flavonol glycosides: myricetin-3-hexoside and myricetin-rhamnoside, predominate ones in CC and myricetin-3-hexoside in CS. Antioxidant potential tested with the FRAP method showed no difference between CS and CC aqueous extracts, while higher phenolic content of CC comparing to CS, determined with a Folin-Cicolateu reagent correlated to its higher antioxidant capacity observed by the DPPH method. Both extracts were assessed for antimicrobial activity, using disc-diffusion and broth microdilution assays, targeting the opportunistic pathogens, associated with food poisoning, urinary, respiratory tract, blood stream and wound infections in humans. Antimicrobial assays revealed that fungi were in general more sensitive to both Cistus aqueous extracts, comparing to the bacteria where two extracts showed very similar activity. The most potent activity was observed against A. baumannii for both extracts. The extracts were tested on human lung cancer (A549) cell line using the MTT assay, showing very similar antiproliferative activity. After 72 h treatment with CC and CS aqueous extracts in concentration of 0.5 g/L, the viability of the cells were 37% and 50% respectively, compared to non-treated cells.
Collapse
Affiliation(s)
- Ivana Carev
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.C.); (O.P.)
| | - Ana Maravić
- Faculty of Science, University of Split, 21000 Split, Croatia; (A.M.); (N.I.)
| | - Nada Ilić
- Faculty of Science, University of Split, 21000 Split, Croatia; (A.M.); (N.I.)
| | | | - Olivera Politeo
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.C.); (O.P.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mila Radan
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.C.); (O.P.)
- Correspondence:
| |
Collapse
|