1
|
Kopp Alves A, Hauschild T, Basegio TM, Amorim Berutti F. Influence of lignin and cellulose from termite-processed biomass on biochar production and evaluation of chromium VI adsorption. Sci Rep 2024; 14:14937. [PMID: 38942919 PMCID: PMC11213878 DOI: 10.1038/s41598-024-65959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
The increasing water contamination by toxic heavy metals, particularly hexavalent chromium, has become a significant environmental concern. This study explores the pyrolysis of termite-processed biomass, specifically Pinus elliottii particleboard and its termite droppings (TDs), to produce biochar and its application for chromium (VI) adsorption. Termite droppings, rich in lignin, and particleboard, rich in cellulose, were pyrolyzed at various temperatures to assess the effect of biomass composition on biochar properties. The study found that lignin-rich termite droppings produced biochar with higher fixed carbon content and specific surface area than cellulose-rich particleboard biochar. FTIR and Raman spectroscopy revealed significant molecular structure changes during pyrolysis, which influenced the adsorption capabilities of the biochar. Adsorption experiments demonstrated that TD biochar exhibited significantly higher chromium (VI) adsorption capacity, attributed to its distinct chemical composition and enhanced surface properties due to higher lignin content. These findings underscore the crucial role of lignin in producing efficient biochar for heavy metal adsorption, highlighting the practical applicability of termite-processed biomass in water purification technologies.
Collapse
Affiliation(s)
- Annelise Kopp Alves
- Materials Engineering Department, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/711, Porto Alegre, RS, 90035-190, Brazil.
| | - Tailane Hauschild
- Materials Engineering Department, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/711, Porto Alegre, RS, 90035-190, Brazil
| | - Tania Maria Basegio
- Materials Engineering Department, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/711, Porto Alegre, RS, 90035-190, Brazil
| | - Felipe Amorim Berutti
- Materials Engineering Department, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/711, Porto Alegre, RS, 90035-190, Brazil
| |
Collapse
|
2
|
Dar MA, Xie R, Jing L, Qing X, Ali S, Pandit RS, Shaha CM, Sun J. Elucidating the structure, and composition of bacterial symbionts in the gut regions of wood-feeding termite, Coptotermes formosanus and their functional profile towards lignocellulolytic systems. Front Microbiol 2024; 15:1395568. [PMID: 38846576 PMCID: PMC11155305 DOI: 10.3389/fmicb.2024.1395568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
The wood-feeding termite, Coptotermes formosanus, presents an efficient lignocellulolytic system, offering a distinctive model for the exploration of host-microbial symbiosis towards lignocellulose degradation. Despite decades of investigation, understanding the diversity, community structure, and functional profiles of bacterial symbionts within specific gut regions, particularly the foregut and midgut of C. formosanus, remains largely elusive. In light of this knowledge gap, our efforts focused on elucidating the diversity, community composition and functions of symbiotic bacteria inhabiting the foregut, midgut, and hindgut of C. formosanus via metagenomics. The termite harbored a diverse community of bacterial symbionts encompassing 352 genera and 26 known phyla, exhibiting an uneven distribution across gut regions. Notably, the hindgut displayed a higher relative abundance of phyla such as Bacteroidetes (56.9%) and Spirochetes (23.3%). In contrast, the foregut and midgut were predominantly occupied by Proteobacteria (28.9%) and Firmicutes (21.2%) after Bacteroidetes. The foregut harbored unique phyla like Candidate phylum_TM6 and Armatimonadetes. At the family level, Porphyromonadaceae (28.1, 40.6, and 53.5% abundance in foregut, midgut, and hindgut, respectively) and Spirochaetaceae (foregut = 9%, midgut = 16%, hindgut = 21.6%) emerged as dominant families in the termite's gut regions. Enriched operational taxonomic units (OTUs) were most abundant in the foregut (28), followed by the hindgut (14), while the midgut exhibited enrichment of only two OTUs. Furthermore, the functional analyses revealed distinct influences of bacterial symbionts on various metabolic pathways, particularly carbohydrate and energy metabolisms of the host. Overall, these results underscore significant variations in the structure of the bacterial community among different gut regions of C. formosanus, suggesting unique functional roles of specific bacteria, thereby inspiring further investigations to resolve the crosstalk between host and microbiomes in individual gut-regions of the termite.
Collapse
Affiliation(s)
- Mudasir A. Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Rongrong Xie
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Luohui Jing
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Xu Qing
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Shehbaz Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | | | - Chaitali M. Shaha
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| |
Collapse
|