1
|
El-Qashty R, Youssef J, Hany E. The role of erythropoietin-loaded hydrogel versus adipose derived stem cell secretome in the regeneration of tongue defects. BMC Oral Health 2024; 24:1109. [PMID: 39294639 PMCID: PMC11411902 DOI: 10.1186/s12903-024-04835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Tongue defects have several etiologies and significantly affect the quality of life. This study was conducted to compare the regenerative potential of erythropoietin (EPO)-loaded hydrogel and adipose derived stem cell (ADSC) secretome on tongue dorsum defects focusing on the role of anti-inflammatory M2 macrophage phenotype. METHODS Rats were subjected to induction of mechanical circular defects on the dorsal surface of the tongue, then divided into three groups; Group I (control): received 0.1 ml phosphate buffered saline, Group II (EPO): received 5000 U/kg EPO-hydrogel, and Group III (ADSC-Secretome): received 0.1 ml ADSC-Secretome. Treatments were injected circumferentially around wound margins after induction. Seven and fourteen days after treatment, specimens were obtained and processed for histological and immunohistochemical staining followed by the relevant histomorphometric and statistical analyses. RESULTS Seven days after treatment, groups II and III presented defects with some epithelial regeneration at the lateral margins, while the center of the defect showed granulation tissue with much inflammatory cells. The base of the defects showed some muscle fibers and new blood vessels, however group III showed more enhanced neovascularization. Fourteen days after therapeutic intervention, group II defects were completely covered with epithelium showing a thin keratin layer with regular rete pegs interdigitating with the underlying connective tissue papillae, but tongue papillae were not restored. Group III expressed much better healing with developing filiform papillae. The connective tissue showed more vascularity and well-arranged muscle bundles. Both treated groups showed a significant decrease in defect depth and significant increase in anti-inflammatory macrophages compared to the control group at both time intervals, however there was no significant difference between the two treated groups. CONCLUSION Both treatments showed promising and comparable results in the treatment of tongue defects reducing inflammation and restoring tongue histological architecture with significant upregulation of M2 macrophage.
Collapse
Affiliation(s)
- Rana El-Qashty
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Jilan Youssef
- Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Oral Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
4
|
Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023; 171:116746. [PMID: 36965655 PMCID: PMC10559728 DOI: 10.1016/j.bone.2023.116746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In tissue engineering, the fate of a particular organ/tissue regeneration and repair mainly depends on three pillars - 3D architecture, cells used, and stimulus provided. 3D cell supportive structure development is one of the crucial pillars necessary for defining organ/tissue geometry and shape. In recent years, the advancements in 3D bio-printing (additive manufacturing) made it possible to develop very precise 3D architectures with the help of industrial software like Computer-Aided Design (CAD). The main requirement for the 3D printing process is the bio-ink, which can act as a source for cell support, proliferation, drug (growth factors, stimulators) delivery, and organ/tissue shape. The selection of the bio-ink depends upon the type of 3D tissue of interest. Printing tissues like bone and cartilage is always challenging because it is difficult to find printable biomaterial that can act as bio-ink and mimic the strength of the natural bone and cartilage tissues. This review describes different biomaterials used to develop bio-inks with different processing variables and cell-seeding densities for bone and cartilage 3D printing applications. The review also discusses the advantages, limitations, and cell bio-ink compatibility in each biomaterial section. The emphasis is given to bio-inks reported for 3D printing cartilage and bone and their applications in orthopedics and orthodontists. The critical/important performance and the architectural morphology requirements of desired bone and cartilage bio-inks were compiled in summary.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA; Pharmaceutical Chemistry Department, Marathwada Mitramandal's College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Abhinav Chatterjee
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
5
|
Cai H, Xu X, Lu X, Zhao M, Jia Q, Jiang HB, Kwon JS. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers (Basel) 2023; 15:2405. [PMID: 37242980 PMCID: PMC10224282 DOI: 10.3390/polym15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.
Collapse
Affiliation(s)
- HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| | - Xiaotong Xu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Xinyue Lu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Menghua Zhao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| |
Collapse
|
6
|
Chen A, Deng S, Lai J, Li J, Chen W, Varma SN, Zhang J, Lei C, Liu C, Huang L. Hydrogels for Oral Tissue Engineering: Challenges and Opportunities. Molecules 2023; 28:3946. [PMID: 37175356 PMCID: PMC10179962 DOI: 10.3390/molecules28093946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Oral health is crucial to daily life, yet many people worldwide suffer from oral diseases. With the development of oral tissue engineering, there is a growing demand for dental biomaterials. Addressing oral diseases often requires a two-fold approach: fighting bacterial infections and promoting tissue growth. Hydrogels are promising tissue engineering biomaterials that show great potential for oral tissue regeneration and drug delivery. In this review, we present a classification of hydrogels commonly used in dental research, including natural and synthetic hydrogels. Furthermore, recent applications of these hydrogels in endodontic restorations, periodontal tissues, mandibular and oral soft tissue restorations, and related clinical studies are also discussed, including various antimicrobial and tissue growth promotion strategies used in the dental applications of hydrogels. While hydrogels have been increasingly studied in oral tissue engineering, there are still some challenges that need to be addressed for satisfactory clinical outcomes. This paper summarizes the current issues in the abovementioned application areas and discusses possible future developments.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Jing Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; (A.C.)
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
9
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front Bioeng Biotechnol 2023; 11:991821. [PMID: 37122863 PMCID: PMC10140526 DOI: 10.3389/fbioe.2023.991821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- School of Basic Medical Science, Chengdu University, Chengdu, China
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, Ankara, Türkiye
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Living System Materialogy (LiSM) Reseach Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Hirokazu Kaji,
| |
Collapse
|
10
|
Tigmeanu CV, Ardelean LC, Rusu LC, Negrutiu ML. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers (Basel) 2022; 14:3658. [PMID: 36080732 PMCID: PMC9460687 DOI: 10.3390/polym14173658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
3D-printing application in dentistry not only enables the manufacture of patient-specific devices and tissue constructs, but also allows mass customization, as well as digital workflow, with predictable lower cost and rapid turnaround times. 4D printing also shows a good impact in dentistry, as it can produce dynamic and adaptable materials, which have proven effective in the oral environment, under its continuously changing thermal and humidity conditions. It is expected to further boost the research into producing a whole tooth, capable to harmoniously integrate with the surrounding periodontium, which represents the ultimate goal of tissue engineering in dentistry. Because of their high versatility associated with the wide variety of available materials, additive manufacturing in dentistry predominantly targets the production of polymeric constructs. The aim of this narrative review is to catch a glimpse of the current state-of-the-art of additive manufacturing in dentistry, and the future perspectives of this modern technology, focusing on the specific polymeric materials.
Collapse
Affiliation(s)
- Codruta Victoria Tigmeanu
- Department of Technology of Materials and Devices in Dental Medicine, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Meda-Lavinia Negrutiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Research Center in Dental Medicine Using Conventional and Alternative Technologies, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
11
|
Ye S, Wei B, Zeng L. Advances on Hydrogels for Oral Science Research. Gels 2022; 8:gels8050302. [PMID: 35621600 PMCID: PMC9140480 DOI: 10.3390/gels8050302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with different kinds of stem cells and growth factors, various hydrogel complexes have played an optimistic role in endodontic and periodontal tissue engineering studies. Further, hydrogels exhibit biological effects in response to external stimuli, which results in hydrogels having a promising application in local drug delivery. This review summarized the advances of hydrogels in oral science research, in the hopes of providing a reference for future applications.
Collapse
Affiliation(s)
- Shengjia Ye
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Bin Wei
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Department of Stomatology Special Consultation Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| | - Li Zeng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| |
Collapse
|