1
|
Yang A, Tian Y, Li X. Unveiling the hidden arsenal: new insights into Proteus mirabilis virulence in UTIs. Front Cell Infect Microbiol 2024; 14:1465460. [PMID: 39606746 PMCID: PMC11599158 DOI: 10.3389/fcimb.2024.1465460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium commonly found in urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). The pathogenic mechanisms of Proteus mirabilis are complex and diverse, involving various virulence factors, including fimbriae, flagella, urease, polyphosphate kinase, lipopolysaccharides, cyclic AMP receptor protein, Sigma factor RpoE, and RNA chaperone protein Hfq. These factors play crucial roles in bacterial colonization, invasion, evasion of host immune responses, biofilm formation, and urinary stone formation. This paper is the first to comprehensively describe the hydrogenase system, autotransporter proteins, molybdate-binding protein ModA, and two-component systems as virulence factors in Proteus mirabilis, providing new insights into its pathogenic mechanisms in urinary tract infections. This review explores the mechanisms of biofilm formation by Proteus mirabilis and the various virulence factors involved in UTIs, revealing many newly discovered virulence factors from recent studies. These findings may offer new targets for clinical treatment of UTIs and vaccine development, highlighting the importance of understanding these virulence factors.
Collapse
Affiliation(s)
- Aoyu Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchong Tian
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Li J, Liao T, Chua EG, Zhang M, Shen Y, Song X, Marshall BJ, Benghezal M, Tang H, Li H. Helicobacter pylori Outer Membrane Vesicles: Biogenesis, Composition, and Biological Functions. Int J Biol Sci 2024; 20:4029-4043. [PMID: 39113715 PMCID: PMC11302881 DOI: 10.7150/ijbs.94156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Helicobacter pylori has been recognized not only as a causative agent of a spectrum of gastroduodenal diseases including chronic gastritis, peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer, but also as the culprit in several extra-gastric diseases. However, the association of H. pylori infection with extra-gastric diseases remains elusive, prompting a reevaluation of the role of H. pylori-derived outer membrane vesicles (OMVs). Like other gram-negative bacteria, H. pylori constitutively sheds biologically active OMVs for long-distance delivery of bacterial virulence factors in a concentrated and protected form, averting the need of direct bacterial contact with distant host cells to induce extra-gastric diseases associated with this gastric pathogen. Additionally, H. pylori-derived OMVs contribute to bacterial survival and chronic gastric pathogenesis. Moreover, the immunogenic activity, non-replicable nature, and anti-bacterial adhesion effect of H. pylori OMVs make them a desirable vaccine candidate against infection. The immunogenic potency and safety concerns of the OMV contents are challenges in the development of H. pylori OMV-based vaccines. In this review, we discuss recent advances regarding H. pylori OMVs, focusing on new insights into their biogenesis mechanisms and biological functions.
Collapse
Affiliation(s)
- Jiao Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | | | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands WA 6009, Australia
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yalin Shen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaona Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Barry J. Marshall
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands WA 6009, Australia
| | - Mohammed Benghezal
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Kiełbowski K, Kordykiewicz D, Jesionka J, Wójcik J, Ptaszyński K, Kostopanagiotou K, Waloszczyk P, Wojtyś ME. A Rare Case of Primary Pulmonary Diffuse Large B-Cell Lymphoma Transformed from Marginal Zone Mucosa-Associated Lymphoid Tissue Lymphoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:840. [PMID: 38929457 PMCID: PMC11205931 DOI: 10.3390/medicina60060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Primary pulmonary lymphoma is a rare neoplasm characterized by the proliferation of lymphoid tissue affecting the lungs. The most common subtype is marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT). Rarely, a MALT lymphoma transforms into a diffuse large B-cell lymphoma (DLBCL). Treatment options include chemotherapy, radiotherapy, immunotherapy, and surgery. Here, we describe a patient with a primary pulmonary MALT lymphoma transforming into DLBCL. The purpose of this case report is to raise awareness of the relevant clinical and imaging features and to emphasize the need for a multidisciplinary approach to optimal management. In addition, we screened the PubMed and Embase databases for similar reports with a confirmed presence of transforming lymphoma within the lungs.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Dawid Kordykiewicz
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Janusz Jesionka
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology and Forensic Medicine, University of Warmia and Mazury Olsztyn, 11-082 Olsztyn, Poland
| | | | - Piotr Waloszczyk
- Independent Laboratory of Pathology, Zdunomed, Energetyków 2, 70-656 Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| |
Collapse
|
4
|
Niikura R. Special Issue: The Role of Gut Microbiota in Gastrointestinal Cancers-From Pathogenesis to Therapeutic Perspectives. Biomedicines 2023; 11:2950. [PMID: 38001950 PMCID: PMC10669096 DOI: 10.3390/biomedicines11112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Associations between the gut microbiota and gastrointestinal carcinogenesis have been intensively studied [...].
Collapse
Affiliation(s)
- Ryota Niikura
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Clarke OE, Pelling H, Bennett V, Matsumoto T, Gregory GE, Nzakizwanayo J, Slate AJ, Preston A, Laabei M, Bock LJ, Wand ME, Ikebukuro K, Gebhard S, Sutton JM, Jones BV. Lipopolysaccharide structure modulates cationic biocide susceptibility and crystalline biofilm formation in Proteus mirabilis. Front Microbiol 2023; 14:1150625. [PMID: 37089543 PMCID: PMC10113676 DOI: 10.3389/fmicb.2023.1150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Chlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. Proteus mirabilis, an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in P. mirabilis, we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs). One mutant recovered from these screens (designated RS47-2) exhibited ~ 8-fold reduction in CHD MIC. Complete genome sequencing of RS47-2 showed a single mini-Tn5 insert in the waaC gene involved in lipopolysaccharide (LPS) inner core biosynthesis. Phenotypic screening of RS47-2 revealed a significant increase in cell surface hydrophobicity and serum susceptibility compared to the wildtype, and confirmed defects in LPS production congruent with waaC inactivation. Disruption of waaC was also associated with increased susceptibility to a range of other cationic biocides but did not affect susceptibility to antibiotics tested. Complementation studies showed that repression of smvA efflux activity in RS47-2 further increased susceptibility to CHD and other cationic biocides, reducing CHD MICs to values comparable with the most CHD susceptible isolates characterized. The formation of crystalline biofilms and blockage of urethral catheters was also significantly attenuated in RS47-2. Taken together, these data show that aspects of LPS structure and upregulation of the smvA efflux system function in synergy to modulate susceptibility to CHD and other cationic biocides, and that LPS structure is also an important factor in P. mirabilis crystalline biofilm formation.
Collapse
Affiliation(s)
- O. E. Clarke
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - H. Pelling
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - V. Bennett
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - T. Matsumoto
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - G. E. Gregory
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. Nzakizwanayo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. J. Slate
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. Preston
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - M. Laabei
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - L. J. Bock
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - M. E. Wand
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - K. Ikebukuro
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - S. Gebhard
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. M. Sutton
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - B. V. Jones
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
6
|
Feng S, Lin J, Zhang X, Hong X, Xu W, Wen Y, She F. Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of Helicobacter pylori. Infect Drug Resist 2023; 16:1839-1847. [PMID: 37016632 PMCID: PMC10066898 DOI: 10.2147/idr.s403046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose Helicobacter pylori is associated with the development of gastrointestinal diseases. However, its eradication is challenged by an increased rate of drug resistance. AlgC and GalU are important for the synthesis of UDP-glucose, which is a substrate for the synthesis of lipopolysaccharide (LPS) in H. pylori. In this study, we investigated the role of UDP-glucose in the intrinsic drug resistance in H. pylori. Methods Gene knockout strains or complementation strains, including ΔalgC, ΔgalU, ΔgalE, Δhp0045, ΔalgC/algC* and ΔgalU/galU* were constructed in Hp26695; and ΔalgC and ΔgalU were also constructed in two clinical drug-resistant strains, Hp008 and Hp135. The minimum inhibitory concentrations (MIC) of H. pylori to amoxicillin (AMO), tetracycline (TET), clarithromycin (CLA), metronidazole (MNZ), levofloxacin (LEV), and rifampicin (RIF) were measured using MIC Test Strips. Silver staining was performed to examine the role of AlgC and GalU in LPS synthesis. Ethidium bromide (EB) accumulation assay was performed to assess the outer membrane permeability of H. pylori strains. Results Knockout of algC and galU in H. pylori resulted in increased drug sensitivity to AMO, MNZ, CLA, LEV, and RIF; whereas knockout of hp0045 and galE, which are involved in GDP-fucose and UDP-galactose synthesis, respectively, did not significantly alter the drug sensitivity of H. pylori. Knockout of algC and galU in clinically drug-resistant strains resulted in significantly increased drug sensitivity to all the antibiotics, except MNZ. The lipid A-core structure was altered in ΔalgC and ΔgalU when their EB accumulation was higher than that in the wild type and complementation strains. Conclusion UDP-glucose may play an important role in increasing drug resistance to AMO, MNZ, CLA, LEV, TET, and RIF by maintaining the lipid A-core structure and decreasing membrane permeability. AlgC and GalU may serve as potential drug targets for decreasing antibiotic resistance in clinical isolates.
Collapse
Affiliation(s)
- Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jiansheng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xin Hong
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Wanyin Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
7
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Sijmons D, Guy AJ, Walduck AK, Ramsland PA. Helicobacter pylori and the Role of Lipopolysaccharide Variation in Innate Immune Evasion. Front Immunol 2022; 13:868225. [PMID: 35634347 PMCID: PMC9136243 DOI: 10.3389/fimmu.2022.868225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori is an important human pathogen that infects half the human population and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several mechanisms to overcome the innate and adaptive immune systems. H. pylori can modulate interleukin (IL) secretion and innate immune cell function by the action of several virulence factors such as VacA, CagA and the type IV secretion system. Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the function of these cells, reducing the secretion of immune signaling molecules, and influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells. Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase variation and contains human blood group carbohydrate determinants such as the Lewis system antigens, which are proposed to be involved in molecular mimicry of the host. Lastly, the H. pylori group of outer membrane proteins such as BabA play an important role in attachment and interaction with host Lewis and other carbohydrate antigens. This review examines the various mechanisms that H. pylori utilises to evade the innate immune system as well as discussing how the structure of the H. pylori LPS plays a role in immune evasion.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Andrew J. Guy
- School of Science, RMIT University, Melbourne, VIC, Australia
- ZiP Diagnostics, Collingwood, VIC, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- *Correspondence: Paul A. Ramsland,
| |
Collapse
|