1
|
Liu Y, Qi L, Ye B, Wang A, Lu J, Qu L, Luo P, Wang L, Jiang A. MOICS, a novel classier deciphering immune heterogeneity and aid precise management of clear cell renal cell carcinoma at multiomics level. Cancer Biol Ther 2024; 25:2345977. [PMID: 38659199 PMCID: PMC11057626 DOI: 10.1080/15384047.2024.2345977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Recent studies have indicated that the tumor immune microenvironment plays a pivotal role in the initiation and progression of clear cell renal cell carcinoma (ccRCC). However, the characteristics and heterogeneity of tumor immunity in ccRCC, particularly at the multiomics level, remain poorly understood. We analyzed immune multiomics datasets to perform a consensus cluster analysis and validate the clustering results across multiple internal and external ccRCC datasets; and identified two distinctive immune phenotypes of ccRCC, which we named multiomics immune-based cancer subtype 1 (MOICS1) and subtype 2 (MOICS2). The former, MOICS1, is characterized by an immune-hot phenotype with poor clinical outcomes, marked by significant proliferation of CD4+ and CD8+ T cells, fibroblasts, and high levels of immune inhibitory signatures; the latter, MOICS2, exhibits an immune-cold phenotype with favorable clinical characteristics, characterized by robust immune activity and high infiltration of endothelial cells and immune stimulatory signatures. Besides, a significant negative correlation between immune infiltration and angiogenesis were identified. We further explored the mechanisms underlying these differences, revealing that negatively regulated endopeptidase activity, activated cornification, and neutrophil degranulation may promote an immune-deficient phenotype, whereas enhanced monocyte recruitment could ameliorate this deficiency. Additionally, significant differences were observed in the genomic landscapes between the subtypes: MOICS1 exhibited mutations in TTN, BAP1, SETD2, MTOR, MUC16, CSMD3, and AKAP9, while MOICS2 was characterized by notable alterations in the TGF-β pathway. Overall, our work demonstrates that multi-immune omics remodeling analysis enhances the understanding of the immune heterogeneity in ccRCC and supports precise patient management.
Collapse
Affiliation(s)
- Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Bicheng Ye
- School of Clinical Medicine, Medical College of Yangzhou Polytechnic College, Yangzhou, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Juan Lu
- Vocational Education Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Santagata S, Rea G, Bello AM, Capiluongo A, Napolitano M, Desicato S, Fragale A, D'Alterio C, Trotta AM, Ieranò C, Portella L, Persico F, Di Napoli M, Di Maro S, Feroce F, Azzaro R, Gabriele L, Longo N, Pignata S, Perdonà S, Scala S. Targeting CXCR4 impaired T regulatory function through PTEN in renal cancer patients. Br J Cancer 2024; 130:2016-2026. [PMID: 38704478 PMCID: PMC11183124 DOI: 10.1038/s41416-024-02702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist, R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients. METHODS PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay, IL-35, IFN-γ, IL-10, TGF-β1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L, PTEN, CD25, TGF-β1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted. RESULTS R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-β1, while increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it. IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation. CONCLUSION R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour microenvironment.
Collapse
Affiliation(s)
- Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Capiluongo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sonia Desicato
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Alessandra Fragale
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Francesco Persico
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Marilena Di Napoli
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Florinda Feroce
- Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Rosa Azzaro
- Transfusion Medicine Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Nicola Longo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Sandro Pignata
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sisto Perdonà
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| |
Collapse
|
3
|
Namdari H, Rezaei F, Heidarnejad F, Yaghoubzad-Maleki M, Karamigolbaghi M. Immunoinformatics Approach to Design a Chimeric CD70-Peptide Vaccine against Renal Cell Carcinoma. J Immunol Res 2024; 2024:2875635. [PMID: 38314087 PMCID: PMC10838208 DOI: 10.1155/2024/2875635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidarnejad
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Yang Q, Ye F, Li L, Chu J, Tian Y, Cao J, Gan S, Jiang A. Integration analysis of PLAUR as a sunitinib resistance and macrophage related biomarker in ccRCC, an in silicon and experimental study. J Biomol Struct Dyn 2024:1-18. [PMID: 38173169 DOI: 10.1080/07391102.2023.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sunitinib remains the preferred systemic treatment option for specific patients with advanced RCC who are ineligible for immune therapy. However, it's essential to recognize that Sunitinib fails to elicit a favourable response in all patients. Moreover, most patients eventually develop resistance to Sunitinib. Therefore, identifying new targets associated with Sunitinib resistance is crucial. Utilizing multiple datasets from public cohorts, we conducted an exhaustive analysis and identified a total of 8 microRNAs and 112 mRNAs displaying significant expression differences between Sunitinib responsive and resistant groups. A particular set of six genes, specifically NIPSNAP1, STK40, SDC4, NEU1, TBC1D9, and PLAUR, were identified as highly significant via WGCNA. To delve deeper into the resistance mechanisms, we performed additional investigations using cell, molecular, and flow cytometry tests. These studies confirmed PLAUR's pivotal role in fostering Sunitinib resistance, both in vitro and in vivo. Our findings suggest that PLAUR could be a promising therapeutic target across various cancer types. In conclusion, this investigation not only uncovers vital genes and microRNAs associated with Sunitinib resistance in RCC but also introduces PLAUR as a prospective therapeutic target for diverse cancers. The outcomes contribute to advancing personalized healthcare and developing superior therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Fangdie Ye
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Li
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jian Chu
- Department of Urology, The Luodian Hospital in Baoshan District of Shanghai, China
| | - Yijun Tian
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Cao
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Ding R, Shao R, Zhang L, Yan J. Preferences and Willingness to Pay for Medication in Patients with Renal Cell Carcinoma in China: A Discrete-Choice Experiment. THE PATIENT 2024; 17:97-108. [PMID: 38030868 DOI: 10.1007/s40271-023-00659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE We aimed to assess the relative importance of attributes and the willingness to pay for pharmacological therapies among patients with renal cell carcinoma in China. METHODS Patients with renal cell carcinoma completed a D-efficient-designed, discrete-choice experiment online survey that presented a series of ten trade-off questions and one examining scenario. Based on the literature review and consultations with patients with renal cell carcinoma and clinicians, each question included a pair of hypothetical renal cell carcinoma medication profiles characterized by seven attributes including progression-free survival, objective response rate, medication regimen, fatigue, gastrointestinal reaction, hand-foot syndrome, and monthly out-of-pocket costs. Relative importance and willingness to pay were calculated using coefficients estimated by mixed logit regression in the main analysis. Subgroup analyses were conducted considering the heterogeneity of the participants, based on sex, education level, and income level, using conditional logit regression. RESULTS The analysis incorporated responses from 182 Chinese respondents. Except for the medication regimen, all attributes were statistically significant. Progression-free survival was the most important attribute, followed by objective response rate, monthly out-of-pocket costs, fatigue, gastrointestinal reaction, and hand-foot syndrome. Patients were willing to pay ¥2010.51 ($298.30), ¥494.93 ($73.43) for 1 unit improvement of progression-free survival, and objective response rate, and¥7558.93 ($1121.50), ¥6927.24 ($1027.78) to avoid experiencing fatigue and gastrointestinal reaction, respectively. Differences in preferences and willingness to pay were found according to patients' gender, income, and education level. CONCLUSIONS In China, patients with renal cell carcinoma preferred medications with better efficacy (objective response rate and progression-free survival) and lower out-of-pocket costs. Heterogeneity can be found in preferences and willingness to pay based on patients' gender, income, and education levels.
Collapse
Affiliation(s)
- Ruilin Ding
- School of International Business, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, 211198, Nanjing, Jiangsu, People's Republic of China
- The Research Center of National Drug Policy & Ecosystem, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Rong Shao
- School of International Business, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, 211198, Nanjing, Jiangsu, People's Republic of China
- The Research Center of National Drug Policy & Ecosystem, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Lingli Zhang
- School of Pharmacy, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, 211166, Nanjing, Jiangsu, People's Republic of China.
| | - Jianzhou Yan
- School of International Business, China Pharmaceutical University, No.639 Longmian Avenue, Jiangning District, 211198, Nanjing, Jiangsu, People's Republic of China.
- The Research Center of National Drug Policy & Ecosystem, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Meng L, Collier KA, Wang P, Li Z, Monk P, Mortazavi A, Hu Z, Spakowicz D, Zheng L, Yang Y. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells 2023; 13:34. [PMID: 38201238 PMCID: PMC10777977 DOI: 10.3390/cells13010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The most common subtype of renal cell carcinoma is clear cell renal cell carcinoma (ccRCC). While localized ccRCC can be cured with surgery, metastatic disease has a poor prognosis. Recently, immunotherapy has emerged as a promising approach for advanced ccRCC. This review provides a comprehensive overview of the evolving immunotherapeutic landscape for metastatic ccRCC. Immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 and CTLA-4 inhibitors have demonstrated clinical efficacy as monotherapies and in combination regimens. Combination immunotherapies pairing ICIs with antiangiogenic agents, other immunomodulators, or novel therapeutic platforms such as bispecific antibodies and chimeric antigen receptor (CAR) T-cell therapy are areas of active research. Beyond the checkpoint blockade, additional modalities including therapeutic vaccines, cytokines, and oncolytic viruses are also being explored for ccRCC. This review discusses the mechanisms, major clinical trials, challenges, and future directions for these emerging immunotherapies. While current strategies have shown promise in improving patient outcomes, continued research is critical for expanding and optimizing immunotherapy approaches for advanced ccRCC. Realizing the full potential of immunotherapy will require elucidating mechanisms of response and resistance, developing predictive biomarkers, and rationally designing combination therapeutic regimens tailored to individual patients. Advances in immunotherapy carry immense promise for transforming the management of metastatic ccRCC.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Katharine A. Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Peng Wang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zhiwei Hu
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Linghua Zheng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| |
Collapse
|
7
|
Zhai X, Chen X, Gu J, Guo D, Zhan X, Tan M, Xu D. The stratification and prognostic importance of molecular and immune landscapes in clear cell renal cell carcinoma. Front Oncol 2023; 13:1256720. [PMID: 37849802 PMCID: PMC10577421 DOI: 10.3389/fonc.2023.1256720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023] Open
Abstract
The aim of our research is to explore the various characteristics and genetic profiles of clear cell renal cell carcinoma (ccRCC) in order to discover possible predictors of prognosis and targets for treatment. By utilizing ssGSEA scores, we categorized patients with ccRCC into groups based on their phenotype, distinguishing between low and high. This categorization revealed significant variations in the expression of crucial immune checkpoint genes and Human Leukocyte Antigen (HLA) genes, suggesting the presence of a potential immune evasion tactic in different subtypes of ccRCC. A predictive model was built using genes that are expressed differently and linked to cell death, showing strong effectiveness in categorizing patient risk. Furthermore, we discovered a noteworthy correlation among risk scores, infiltration of immune cells, the expression of genes related to immune checkpoint inhibitors, and diverse clinical features. This indicates that our scoring system for risk could function as a comprehensive gauge of the severity of the disease. The examination of the mutational terrain further highlighted the predominance of particular genetic changes, including VHL and PBRM1 missense mutations. Finally, we have discovered the function of DKK1 in facilitating cell death in ccRCC, presenting an additional possibility for therapeutic intervention. The results of our study suggest the possibility of incorporating molecular information into clinical prediction, which could lead to personalized treatment approaches in ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyue Tan
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Sganga S, Riondino S, Iannantuono GM, Rosenfeld R, Roselli M, Torino F. Antibody-Drug Conjugates for the Treatment of Renal Cancer: A Scoping Review on Current Evidence and Clinical Perspectives. J Pers Med 2023; 13:1339. [PMID: 37763107 PMCID: PMC10532725 DOI: 10.3390/jpm13091339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are complex chemical structures composed of a monoclonal antibody, serving as a link to target cells, which is conjugated with a potent cytotoxic drug (i.e., payload) through a chemical linker. Inspired by Paul Ehrlich's concept of the ideal anticancer drug as a "magic bullet", ADCs are also highly specific anticancer agents, as they have been demonstrated to recognize, bind, and neutralize cancer cells, limiting injuries to normal cells. ADCs are among the newest pharmacologic breakthroughs in treating solid and hematologic malignancies. Indeed, in recent years, various ADCs have been approved by the Food and Drug Administration and European Medicines Agency for the treatment of several cancers, resulting in a "practice-changing" approach. However, despite these successes, no ADC is approved for treating patients affected by renal cell carcinoma (RCC). In the present paper, we thoroughly reviewed the current literature and summarized preclinical studies and clinical trials that evaluated the activity and toxicity profile of ADCs in RCC patients. Moreover, we scrutinized the potential causes that, until now, hampered the therapeutical success of ADCs in those patients. Finally, we discussed novel strategies that would improve the development of ADCs and their efficacy in treating RCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Torino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.S.); (S.R.); (G.M.I.); (R.R.); (M.R.)
| |
Collapse
|
9
|
Garige M, Poncet S, Norris A, Chou CK, Wu WW, Shen RF, Greenberg JW, Krane LS, Sourbier C. Extended Opioid Exposure Modulates the Molecular Metabolism of Clear Cell Renal Cell Carcinoma. Life (Basel) 2023; 13:life13051196. [PMID: 37240841 DOI: 10.3390/life13051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.
Collapse
Affiliation(s)
- Mamatha Garige
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sarah Poncet
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexis Norris
- Division of Animal Bioengineering and Cellular Therapies, Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20852, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob W Greenberg
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Louis Spencer Krane
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Carole Sourbier
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Yang H, Zhang H, Zhang L, Tusuphan P, Zheng J. ARHGAP11A Is a Novel Prognostic and Predictive Biomarker Correlated with Immunosuppressive Microenvironment in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24097755. [PMID: 37175461 PMCID: PMC10178328 DOI: 10.3390/ijms24097755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor and immune dysfunction is associated with ccRCC poor prognosis. The RhoGTPase-activating proteins (RhoGAPs) family was reported to affect ccRCC development, but its role in immunity and prognosis prediction for ccRCC remain unknown. In the current study, we found ARHGAP11A was the only independent risk factor among 33 RhoGAPs (hazard ratio [HR] 1.949, 95% confidence interval [CI] 1.364-2.785). High ARHGAP11A level was associated with shorter overall survival (OS, HR 2.040, 95% CI 1.646-3.417) and ARHGAP11A is a prognostic biomarker for ccRCC. ARHGAP11A knockdown suppressed renal cell carcinoma (RCC) cell proliferation, colony formation, and migration, suggesting the promoting role of ARHGAP11A on RCC development. Mechanistically, ARHGAP11A might contribute to the suppressive tumor immune microenvironment (TIME). High ARHGAP11A level was correlated with infiltration of immunosuppressive cells (including T helper 2 (Th2) cells, regulatory T (Treg) cells, myeloid derived suppressor cells (MDSC), and M2 macrophage cells), activation of immunosuppressive pathways (IL6-JAK-STAT3 signaling and IFNγ response), and expression of inhibitory immune checkpoints (ICs). ARHGAP11A could promote T cell exhaustion and induce immune escape. ccRCC patients with low ARHGAP11A level were more suitable for immune checkpoint inhibitors (ICIs) therapy, while those with high ARHGAP11A level might benefit from a combination of ARHGAP11A blockade and ICIs. In all, ARHGAP11A might serve as a novel prognostic marker, therapeutic target, and predictor in the clinical response to ICIs therapy for ccRCC.
Collapse
Affiliation(s)
- Huihui Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Hongning Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Liuxu Zhang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Paizigul Tusuphan
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| |
Collapse
|
11
|
Zarrabi KK, Handorf E, Miron B, Zibelman MR, Anari F, Ghatalia P, Plimack ER, Geynisman DM. Comparative Effectiveness of Front-Line Ipilimumab and Nivolumab or Axitinib and Pembrolizumab in Metastatic Clear Cell Renal Cell Carcinoma. Oncologist 2022; 28:157-164. [PMID: 36200791 PMCID: PMC9907035 DOI: 10.1093/oncolo/oyac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment of metastatic renal cell carcinoma (mRCC) is rapidly evolving with new combination therapies demonstrating improved response rates and survival. There are no head-to-head prospective trials comparing an immunotherapy doublet with an immunotherapy/tyrosine-kinase inhibitor-based combination. We compare real-world outcomes in patients treated with axitinib/pembrolizumab (axi/pembro) or ipilimumab/nivolumab (ipi/nivo). The primary endpoints were overall-survival (OS) and real-world progression-free survival (rwPFS). PATIENTS AND METHODS We used a de-identified database to select patients diagnosed with clear cell mRCC and treated with front-line axi/pembro or ipi/nivo from 2018 to 2022. Analyses are adjusted using propensity score-based inverse probability of treatment weighting, balancing age, gender, insurance, race, IMDC risk, and nephrectomy status. We compared survival by treatment groups using weighted and unweighted Kaplan-Meier curves with log-rank tests and weighted Cox proportional hazards regressions. RESULTS We included a total of 1506 patients with mRCC who received frontline axi/pembro (n = 547) or ipi/nivo (n = 959). Median follow-up time was 20.0 months (range: 0.2-47.6). Baseline demographics were similar between the 2 cohorts. Adjusted median OS for the full population was 28.9 months for axi/pembro and was 24.3 months for ipi/nivo (P = .09). Twenty-four-month survival was 53.8% for axi/pembro treated patients and 50.2% for ipi/nivo treated patients. rwPFS was 10.6 months for axi/pembro treated patients and 6.9 months for ipi/nivo treated patients. Treatment with axi/pembro conferred improved survival in the IMDC favorable risk strata, with no significant difference in survival observed within the full cohort. CONCLUSIONS In this retrospective, real-world study of patients treated with front-line combination therapy, patients with IMDC favorable risk disease had better survival when treated with axi/pembro compared to ipi/nivo. However, survival for the entire population and the 24-month median overall survival were not statistically different between treatment groups. Longer follow-up is necessary to discern any emerging significant differences.
Collapse
Affiliation(s)
- Kevin K Zarrabi
- Corresponding author: Kevin Zarrabi, MD MS, Department of Medical Oncology, Sidney Kimmel Cancer Center-Thomas Jefferson University, Philadelphia, PA, USA. Tel: +1 215 503 5088; Fax: +1 215 503 3408;
| | - Elizabeth Handorf
- Corresponding author: Elizabeth Handorf, PhD, Biostatistics & Bioinformatics Facility, Fox Chase Cancer Center-Temple University, Health System, 333 Cottman Avenue, Philadelphia, PA 19111, USA. Tel: +1 215 728 4330; Fax: +1 215 728 2553;
| | - Benjamin Miron
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, USA
| | - Matthew R Zibelman
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, USA
| | - Fern Anari
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, USA
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, USA
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, USA
| | - Daniel M Geynisman
- Corresponding author: Daniel M. Geynisman, MD, Department of Hematology/Oncology, Fox Chase Cancer Center-Temple University Health System, 333 Cottman Avenue, Philadelphia, PA 19111, USA. Tel: +1 215 728 4300; Fax: +1 215 728 3639;
| |
Collapse
|
12
|
Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194607. [PMID: 36230530 PMCID: PMC9559659 DOI: 10.3390/cancers14194607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape for metastatic renal cell carcinoma has rapidly evolved over the years, and we are now in an era of combination therapy strategies employing immune checkpoint blockade and anti-angiogenesis targeted therapy. Since 2018, we have gained regulatory approval for four distinct combination therapies, all with survival benefits, and with guideline recommendation for use in the front-line setting. As such, treatment selection has become increasingly complex with a myriad of treatment choices but little high-level head-to-head data to guide treatment selection. Heterogeneity in tumor biology further complicates treatment selection as tumors vary in behavior and treatment responsiveness. Ongoing development of biomarkers will certainly assist in this setting, and validation of predictive markers represents an unmet need. In their absence, we highlight features of disease and nuances to datasets from landmark prospective clinical trials to help inform treatment selection. There is growing evidence to support deferring upfront systemic therapy in some patients, with opportunities for active surveillance or metastasis-directed therapy. In others, upfront systemic therapy is warranted and necessitates thoughtful consideration of multiple clinicopathologic parameters to inform optimal patient-centered decision making.
Collapse
|
13
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
14
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
15
|
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63:486-498. [PMID: 36067994 PMCID: PMC9448669 DOI: 10.4111/icu.20220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the clinical setting of renal cell carcinoma (RCC), immune reactions such as tumor-specific T cell responses can be spontaneous events or can be elicited by checkpoint inhibitors, cytokines, and other immunotherapy modalities. The results from immunotherapy have led to significant advances in treatment methods and patient outcomes. The approval of nivolumab primarily as a second-line monotherapy and the latest approval of novel combination therapies as first-line treatment have established the significance of immunotherapy in the treatment of RCC. In this perspective, chimeric antigen receptor (CAR)-T cell therapy represents a major advance in the developing field of immunotherapy. This treatment modality facilitates T cells to express specific CARs on the cell surface which are reinfused to the patient to treat the analogous tumor cells. After showing treatment potential in hematological malignancies, this new therapeutic approach has become a strong candidate as a therapeutic modality for solid neoplasms. Although CAR-T cell therapy has shown promise and clinical benefit compared to previous T-cell modulated immunotherapies, further studies are warranted to overcome unfavorable physiological settings and hindrances such as the lack of specific molecular targets, depletion of CAR-T cells, a hostile tumor microenvironment, and on/off-tumor toxicities. Several approaches are being considered and research is ongoing to overcome these problems. In this comprehensive review, we provide the rationale and preliminary results of CAR-T cell therapy in RCC and discuss emerging novel strategies and future directions.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Urology, CHA University College of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Young Hwa Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyo Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|