1
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
3
|
Chopra D, Chadha VD, Dhawan DK. Understanding the role of zingerone on biochemical and behavioral changes in rat brain inflicted with C6 glioma cells. J Biochem Mol Toxicol 2023; 37:e23477. [PMID: 37477207 DOI: 10.1002/jbt.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Malignant glioma is the deadliest form of brain cancer. Zingerone (ZO), a polyphenolic compound found in ginger, offers pharmacological properties that make it a promising agent for containing the growth of glioma cells. The present study was conducted to understand the efficacy of ZO in containing the growth of C6 glioma cells. The study also assessed the prophylactic role of ZO on rat brain glioma induced by C6 cell lines by addressing its antioxidative action on biochemical, behavioral, and histoarchitectural indices. For dose optimization, the animals were pretreated with different doses of ZO for a period of 2 weeks before the inoculation of glioma cells (1 × 105 /10 µL phosphate-buffered saline) in the caudate region of rat brain and the treatment with ZO continued for 4 more weeks post implantation. In vitro studies were done to assess the radical scavenging activity of ZO and also to determine its effects on viability of C6 glioma cells at different concentrations. Glioma-bearing rats showed significant alterations in memory; exploratory and muscular activities which were appreciably improved upon simultaneous supplementation of ZO administered at a dose of 50 mg/kg body weight and were also visible even at a higher dose. Glioma-bearing rats revealed a significant increase in reactive oxygen species, protein carbonyl contents, and lipid peroxidation, but showed a significant decrease in reduced glutathione and antioxidative enzymes in the brain tissue. Interestingly, all the biochemical indices and altered brain histoarchitecture displaying cellular atypia and hyperplasia showed appreciable improvement when supplemented with ZO at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Devika Chopra
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), Panjab University, Chandigarh, India
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Shamsabadi S, Nazer Y, Ghasemi J, Mahzoon E, Baradaran Rahimi V, Ajiboye BO, Askari VR. Promising influences of zingerone against natural and chemical toxins: A comprehensive and mechanistic review. Toxicon 2023; 233:107247. [PMID: 37562703 DOI: 10.1016/j.toxicon.2023.107247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Zingerone is a flavor phytochemical present in ginger, a flowering plant belonging to the Zingiberaceae family used as a condiment and herbal remedy. It possesses anti-inflammatory, antioxidant, and anti-apoptotic properties and also exhibits protective effects against radiation, chemicals, biological toxins, and oxidative stress. The current comprehensive literature review was performed in order to assess the therapeutical and protective properties of zingerone against various chemical and natural toxins by considering the mechanisms of action. Extensive searches were performed on Scopus, Web of Science, PubMed, and Google Scholar databases. Zingerone lessens oxidative stress, inflammation, apoptosis, and oxidative DNA damage by increasing the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX). It prevents alginate production, which increases the cell's susceptibility to macrophages, serum, and antibiotics and dramatically lowers the generation of proinflammatory cytokines brought on by lipopolysaccharide (LPS). Cytokine production, MAPK, and NF-κB activation are all inhibited dose-dependently by zingerone. Zingerone also reduces 8-OHdG over-expression in the liver tissue and the expression of NADPH oxidase 4 (NOX4), inflammatory cytokines (e.g., IFN-γ, IL-17, IL-6, COX-2, TNF-α, and iNOS mRNA level), decreases macrophage inflammatory protein cytokines and eliminates free radicals. It also suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 during tumor progression, showing its anti-angiogenic activity. Strong radioprotective properties of zingerone are demonstrated against radiation-induced toxicity. The authors hope this review gives researchers some insight into conducting novel clinical and preclinical studies on pharmaceutical applications and the efficiency of zingerone in cancer treatment, and drug adverse effects.
Collapse
Affiliation(s)
| | - Yazdan Nazer
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ghasemi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Mahzoon
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Basiru O Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zhang H, Jian J, Chen H, Zhu X, Xie J, Xu X. LAGE3 promotes cell metastasis and stemness in non-small cell lung cancer companied with AKT/PI3K signaling pathway activation. Pathol Res Pract 2023; 248:154700. [PMID: 37473499 DOI: 10.1016/j.prp.2023.154700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is reported to have high mortality and morbidity rate worldwide. It is highly susceptible to metastasis. Previous reports have shown the L antigen family member 3 (LAGE3) expression in many cancers and has a carcinogenic role. However, the molecular mechanism of LAGE3 in NSCLC needs to be further explored. METHODS LAGE3 expression profile of NSCLC patients and normal samples in the TCGA cohort was utilized for visualization. Expression pattern of LAGE3 in cell lines of NSCLCs were determined through qRT-PCR. Further, transfection experiments was conducted to measure the LAGE3's effect on the migration, proliferation, invasion, and stemness in NSCLC cell lines (A549 and H1975) by the assays of CCK-8, colony formation, EdU, transwell, and flow cytometry. The in vivo xenograft tumor growth in the nude mouse was conducted to confirm LAGE3 effect on NSCLC tumor growth. Furthermore, western blotting was applied to determine the levels of core proteins including AKT/PI3K signaling pathway and stemness proteins of Nanog, OCT4 and SOX2. RESULTS The TCGA based computational analysis showed that LAGE3 mRNA level in NSCLC was inter-related to worse overall survival. The up-regulated level of LAGE3 in NSCLC cell lines indicated its possibility as a future diagnostic and prognostic biomarker. Functional assays showed that cell migration, proliferation, invasion, sphere formation, and stemness-related protein (Nanog, SOX2, and OCT4) levels were significantly repressed by the knockdown of LAGE3. Subsequently, inhibition of LAGE3 in nude mice (in vivo) demonstrated its ability to reduce the tumor growth of NSCLC. The study also showed that LAGE3 knockdown suppressed cell progression by inactivating the signaling pathway of AKT/PI3K. CONCLUSIONS LAGE3 could promote NSCLC development by activating the AKT/PI3K signaling pathway, thereby accelerating metastasis and cell stemness.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China.
| | - Junling Jian
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China
| | - Hai Chen
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China
| | - Xiaodong Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China
| | - Jianfeng Xie
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China
| | - Xianquan Xu
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei 230031, Anhui, China
| |
Collapse
|
6
|
Kung ML, Huang ST, Tsai KW, Chu TH, Hsieh S. Nanosized zingerone-triggered anti-angiogenesis contributes to tumor suppression in human hepatocellular carcinoma. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|