1
|
Xu P, Liu J, Yi Y, Cai Z, Yin Y, Cai W, Zhang J, Gong Z, Xiao Y. A dew-responsive pectin-based herbicide for enhanced photodynamic inactivation. Carbohydr Polym 2024; 336:122114. [PMID: 38670775 DOI: 10.1016/j.carbpol.2024.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
5-aminolevulinic acid (5-ALA) has been fully demonstrated as a biodegradable, without resistance, and pollution-free pesticide. However, the lack of targeting and the poor adhesion result in a low utilization rate, limiting its practical application. Herein, a dew-responsive polymer pro-pesticide Pec-hyd-ALA was successfully synthesized by grafting 5-ALA onto the pectin (PEC) backbone via acid-sensitive acylhydrazone bonds. When the pro-pesticide is exposed to acid dew on plant surfaces at night, 5-ALA is released and subsequently converted to photosensitize (Protoporphyrin IX, PpIX)in plant cells, leading to its accumulation and promoting photodynamic inactivation (PDI). An inverted fluorescence microscope has verified the accumulation of tetrapyrrole in plant cells. In addition, the highly bio-adhesive PEC backbone effectively improved the wetting and retention of 5-ALA on leaves. The pot experiment also demonstrated the system's control effect on barnyard grass. This work provides a promising approach to improving the herbicidal efficacy of 5-ALA.
Collapse
Affiliation(s)
- Peiyu Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Jing Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China.
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixia Gong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Yaqi Xiao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| |
Collapse
|
2
|
Urgesa G, Lu L, Gao J, Guo L, Qin T, Liu B, Xie J, Xi B. Natural Sunlight-Mediated Emodin Photoinactivation of Aeromonas hydrophila. Int J Mol Sci 2024; 25:5444. [PMID: 38791482 PMCID: PMC11121522 DOI: 10.3390/ijms25105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At the minimum inhibitory concentration of emodin (256 mg/L) to inactivate A. hydrophilia in 30 min, an 11.32% survival rate was observed under 45 W white compact fluorescent light irradiation. In addition, the antibacterial activity under natural sunlight (0.78%) indicated its potential for practical application. Morphological observations demonstrated that the cell walls and membranes of A. hydrophila were susceptible to damage by emodin when exposed to light irradiation. More importantly, the photoinactivation of A. hydrophila was predominantly attributed to the hydroxyl radicals and superoxide radicals produced by emodin, according to the trapping experiment and electron spin resonance spectroscopy. Finally, a light-dependent reactive oxygen species punching mechanism of emodin to photoinactivate A. hydrophila was proposed. This study highlights the potential use of emodin in sunlight-mediated applications for bacterial control, thereby providing new possibilities for the use of Chinese herbal medicine in aquatic diseases prevention.
Collapse
Affiliation(s)
- Gelana Urgesa
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Jinwei Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ting Qin
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Bo Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Jun Xie
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| |
Collapse
|
3
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Angelov I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. Int J Mol Sci 2023; 24:ijms24054400. [PMID: 36901830 PMCID: PMC10002512 DOI: 10.3390/ijms24054400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Photodynamic therapy (PDT) is a curative method, firstly developed for cancer therapy with fast response after treatment and minimum side effects. Two zinc(II) phthalocyanines (3ZnPc and 4ZnPc) and a hydroxycobalamin (Cbl) were investigated on two breast cancer cell lines (MDA-MB-231 and MCF-7) in comparison to normal cell lines (MCF-10 and BALB 3T3). The novelty of this study is a complex of non-peripherally methylpyridiloxy substituted Zn(II) phthalocyanine (3ZnPc) and the evaluation of the effects on different cell lines due to the addition of second porphyrinoid such as Cbl. The results showed the complete photocytotoxicity of both ZnPc-complexes at lower concentrations (<0.1 μM) for 3ZnPc. The addition of Cbl caused a higher phototoxicity of 3ZnPc at one order lower concentrations (<0.01 μM) with a diminishment of the dark toxicity. Moreover, it was determined that an increase of the selectivity index of 3ZnPc, from 0.66 (MCF-7) and 0.89 (MDA-MB-231) to 1.56 and 2.31, occurred by the addition of Cbl upon exposure with a LED 660 nm (50 J/cm2). The study suggested that the addition of Cbl can minimize the dark toxicity and improve the efficiency of the phthalocyanines for anticancer PDT applications.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
- Correspondence: or ; Tel.: +359-9606-181
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Abstract
In 1903, Von Tappeiner and Jesionek [...].
Collapse
Affiliation(s)
- Kyungsu Kang
- Natural Product Informatics Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
6
|
Liu X, Rong N, Sun W, Jian S, Chao J, Chen C, Chen R, Ding R, Chen C, Liu Y, Zhang X. The identification of polyvalent protective immunogens and immune abilities from the outer membrane proteins of Aeromonas hydrophila in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 128:101-112. [PMID: 35926820 DOI: 10.1016/j.fsi.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Among aquaculture vaccines, polyvalent vaccines (for immunoprotection against multiple bacterial species) are more efficient and can better avoid bacterial resistance and antibiotic residues in fish. Here, 15 outer membrane proteins (OMPs) of Aeromonas hydrophila were cloned and purified, and mouse antisera were prepared. Passive immunization to Carassius auratus showed that four OMPs sera (OmpW, OmpAII, P5, and AHA2685) and the entire OMPs serum held effective immunoprotection against A. hydrophila infection. Furthermore, the active immunization of four OMPs to C. auratus showed that OmpW, OmpAII, P5, and AHA2685 held effective immunoprotection against A. hydrophila, and OmpW held active cross-protection against Vibrio alginolyticus. The mechanisms of these four candidate vaccines in triggering immune responses were subsequently explored. They all could activate innate immune responses in active immunization, down-regulate (p < 0.05) the inflammation-related genes expression to reduce the inflammatory reaction induced by A. hydrophila, and down-regulate (p < 0.05) antioxidant-related factors to reduce the antioxidant reaction for bacterial infection. Noteablely, the four OMPs had protective abilities on kidney and spleen tissues of C. auratus after challenged with A. hydrophila and V. alginolyticus by histopathological observation. Collectively, our results identify OmpW as a polyvalent vaccine candidate, and OmpAII, P5, and AHA2685 as vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Na Rong
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Wei Sun
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Sijie Jian
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Jia Chao
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chunlin Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China
| | - Rui Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Rui Ding
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chen Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Mantareva V, Kussovski V, Orozova P, Angelov I, Durmuş M, Najdenski H. Palladium Phthalocyanines Varying in Substituents Position for Photodynamic Inactivation of Flavobacterium hydatis as Sensitive and Resistant Species. Curr Issues Mol Biol 2022; 44:1950-1959. [PMID: 35678662 PMCID: PMC9164046 DOI: 10.3390/cimb44050133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has been considered as a promising methodology to fight the multidrug resistance of pathogenic bacteria. The procedure involves a photoactive compound (photosensitizer), the red or near infrared spectrum for its activation, and an oxygen environment. In general, reactive oxygen species are toxic to biomolecules which feature a mechanism of photodynamic action. The present study evaluates two clinical isolates of Gram-negative Flavobacteriumhydatis (F. hydatis): a multidrug resistant (R) and a sensitive (S) strain. Both occur in farmed fish, leading to the big production losses because of the inefficacy of antibiotics. Palladium phthalocyanines (PdPcs) with methylpyridiloxy groups linked peripherally (pPdPc) or non-peripherally (nPdPc) were studied with full photodynamic inactivation for 5.0 µM nPdPc toward both F. hydatis, R and S strains (6 log), but with a half of this value (3 log) for 5.0 µM pPdPc and only for F. hydatis, S. In addition to the newly synthesized PdPcs as a "positive control" was applied a well-known highly effective zinc phthalocyanine (ZnPcMe). ZnPcMe showed optimal photocytotoxicity for inactivation of both F. hydatis R and S. The present study is encouraging for a further development of aPDT with phthalocyanines as an alternative method to antibiotic medication to keep under control the harmful pathogens in aquacultures' farms.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.K.); (H.N.)
| | - Petya Orozova
- National Reference Laboratory for Fish, Mollusks and Crustacean Diseases, National Diagnostic Research Veterinary Institute, 1000 Sofia, Bulgaria;
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey;
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.K.); (H.N.)
| |
Collapse
|