1
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
2
|
Wagner J, Luck S, Loger K, Açil Y, Spille JH, Kurz S, Ahlhelm M, Schwarzer-Fischer E, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. Bone regeneration in critical-size defects of the mandible using biomechanically adapted CAD/CAM hybrid scaffolds: An in vivo study in miniature pigs. J Craniomaxillofac Surg 2024; 52:127-135. [PMID: 38129185 DOI: 10.1016/j.jcms.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The study aimed to analyze bone regeneration in critical-size defects using hybrid scaffolds biomechanically adapted to the specific defect and adding the growth factor rhBMP-2. For this animal study, ten minipigs underwent bilateral defects in the corpus mandibulae and were subsequently treated with novel cylindrical hybrid scaffolds. These scaffolds were designed digitally to suit the biomechanical requirements of the mandibular defect, utilizing finite element analysis. The scaffolds comprised zirconium dioxide-tricalcium phosphate (ZrO2-TCP) support struts and TCP foam ceramics. One scaffold in each animal was loaded with rhBMP-2 (100 μg/cm³), while the other served as an unloaded negative control. Fluorescent dyes were administered every 2 weeks, and computed tomography (CT) scans were conducted every 4 weeks. Euthanasia was performed after 3 months, and samples were collected for examination using micro-CT and histological evaluation of both hard and soft tissue. Intravital CT examinations revealed minor changes in radiographic density from 4 to 12 weeks postoperatively. In the group treated with rhBMP-2, radiographic density shifted from 2513 ± 128 (mean ± SD) to 2606 ± 115 Hounsfield units (HU), while the group without rhBMP-2 showed a change from 2430 ± 131 to 2601 ± 67 HU. Prior to implantation, the radiological density of samples measured 1508 ± 30 mg HA/cm³, whereas post-mortem densities were 1346 ± 71 mg HA/cm³ in the rhBMP-2 group and 1282 ± 91 mg HA/cm³ in the control group (p = 0.045), as indicated by micro-CT measurements. The histological assessment demonstrated successful ossification in all specimens. The newly formed bone area proportion was significantly greater in the rhBMP-2 group (48 ± 10%) compared with the control group without rhBMP-2 (42 ± 9%, p = 0.03). The mean area proportion of remaining TCP foam was 23 ± 8% with rhBMP-2 and 24 ± 10% without rhBMP-2. Successful bone regeneration was accomplished by implanting hybrid scaffolds into critical-size mandibular defects. Loading these scaffolds with rhBMP-2 led to enhanced bone regeneration and a uniform distribution of new bone formation within the hybrid scaffolds. Further studies are required to determine the adaptability of hybrid scaffolds for larger and potentially segmental defects in the maxillofacial region.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Sascha Luck
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes H Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | | | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Yan S, Wang D, Zhang L, Gan T, Yao H, Zhu H, He Y, Yang K. LIPUS-S/B@NPs regulates the release of SDF-1 and BMP-2 to promote stem cell recruitment-osteogenesis for periodontal bone regeneration. Front Bioeng Biotechnol 2023; 11:1226426. [PMID: 37469445 PMCID: PMC10353878 DOI: 10.3389/fbioe.2023.1226426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose: Poly (lactic-co-glycolic acid)-based nanoparticles (PLGA NPs) have been widely used as the carrier for sustainable drug delivery. However, the drug release from the NPs was usually incomplete and uncontrollable. Herein, a low intensity pulsed ultrasound (LIPUS) assisted SDF-1/BMP-2@nanoparticles (S/B@NPs) system was fabricated to facilitate stem cell recruitment-osteogenesis for periodontal bone regeneration. Methods: In this work, S/B@NPs were prepared with double-emulsion synthesis method. Then the S/B release profile from NPs was evaluated with or without low intensity pulsed ultrasound treatment. Afterwards, the stem cell recruiting and osteoinductive capacities of LIPUS-S/B@NPs were detected with human periodontal ligament cells (hPDLCs) in vitro and in a rat periodontal bone defect model. Results: The results indicated that S/B@NPs were successfully prepared and LIPUS could effectively regulate the release of S/B and increase their final releasing amount. Moreover, LIPUS-S/B@NPs system significantly promoted hPDLCs migrating and osteogenesis in vitro and recruiting rBMSCs to the rat periodontal defect and facilitated bone regeneration in vivo. Conclusion: Our LIPUS assisted S/B@NPs system can effectively facilitate stem cell recruitment and periodontal bone regeneration. Considering its reliable safety and therapeutic effect on bone fracture, LIPUS, as an adjuvant therapy, holds great potential in the regulation of drug delivery systems for bone healing.
Collapse
Affiliation(s)
- Shujin Yan
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Gan
- Department of Ultrasound, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Yao
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Sachse A, Hasenbein I, Hortschansky P, Schmuck KD, Maenz S, Illerhaus B, Kuehmstedt P, Ramm R, Huber R, Kunisch E, Horbert V, Gunnella F, Roth A, Schubert H, Kinne RW. BMP-2 (and partially GDF-5) coating significantly accelerates and augments bone formation close to hydroxyapatite/tricalcium-phosphate/brushite implant cylinders for tibial bone defects in senile, osteopenic sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:31. [PMID: 37378714 PMCID: PMC10307740 DOI: 10.1007/s10856-023-06734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.
Collapse
Affiliation(s)
- André Sachse
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Ines Hasenbein
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany
| | - Klaus D Schmuck
- Johnson & Johnson Medical GmbH, DePuy Synthes, Norderstedt, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Illerhaus
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Peter Kuehmstedt
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - Roland Ramm
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, Leipzig, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany.
| |
Collapse
|
5
|
Yang F, Liu X, Wei D, Zhu Y, Wang F, Liu X, Yan F, Zhang X, Liu Y. Topical Application of Butyl Flufenamate Ointment Promotes Cranial Defect Healing in Mice by Inducing BMP2 Secretion in Skin Mesenchymal Stem Cells. Cells 2022; 11:3620. [PMID: 36429048 PMCID: PMC9688934 DOI: 10.3390/cells11223620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Bone defects and fractures heal slowly compared with injuries to other tissues, creating a heavy burden for patients, their families, and society. Alongside conventional treatment methods for fractures and bone defects, adjuvant therapies play an important but underappreciated role. In a previous study, we found that systemic administration of flufenamic acid promoted osteogenesis in vivo, but its side effects limited the application of our findings. In the present study, we assess the effects of external butyl flufenamate ointment on the healing of cranial defects in mice. We found that application of butyl flufenamate ointment on the surface of the skin accelerated the healing of cranial defects in mice by promoting BMP2 secretion from mouse-skin mesenchymal stem-cells. These findings indicate that butyl flufenamate ointment has potential therapeutic value for treating superficial fractures or bone defects while avoiding the toxicity and side effects of systemic medication, representing a safe and convenient adjuvant therapy to promote healing of superficial bone defects and fractures.
Collapse
Affiliation(s)
- Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Donghao Wei
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xuejiao Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200437, China
| | - Fanyu Yan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| |
Collapse
|
6
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|