1
|
Gonçalves IM, Afzal M, Kennedy N, Moita A, Lima R, Ostrovidov S, Hori T, Nashimoto Y, Kaji H. Placental microphysiological systems: new advances on promising platforms that mimic the microenvironment of the human placenta. LAB ON A CHIP 2024. [PMID: 39417748 DOI: 10.1039/d4lc00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most complex human physiological processes to study is pregnancy. Standard animal models, as well as two-dimensional models, lack the complexity and biological relevance required to accurately study such a physiological process. Recent studies have focused on the development of three-dimensional models based on microfluidic systems, designated as placental microphysiological systems (PMPSs). PMPS devices provide a model of the placental barrier through culturing relevant cell types in specific arrangements and media to mimic the in vivo environment of the maternal-fetal circulation. Here, recent developments of PMPS models for embryo uterine implantation, preeclampsia evaluation, and toxicological screening are presented. Studies that use bioprinting techniques are also discussed. Lastly, recent developments in endometrium microphysiological systems are reviewed. All these presented models showed their superiority compared to standard models in recapitulating the biological environment seen in vivo. However, several limitations regarding the types of cells and materials used for these systems were also widely reported. Despite the need for further improvements, PMPS models contribute to a better understanding of the biological mechanisms surrounding pregnancy and the respective pathologies.
Collapse
Affiliation(s)
- Inês M Gonçalves
- METRICS, University of Minho, Guimarães, Portugal
- IN+, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Muhammad Afzal
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Nithil Kennedy
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
- Faculty of Medicine, Imperial College London, London, UK
| | - Ana Moita
- IN+, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, Rua Gomes Freire, 1169-203, Lisboa, Portugal
| | - Rui Lima
- METRICS, University of Minho, Guimarães, Portugal
- CEFT, Faculty of Engineering of the University of Porto, Porto, Portugal
- ALiCE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, Japan
| |
Collapse
|
2
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Gusella A, Martignoni G, Giacometti C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int J Mol Sci 2024; 25:7886. [PMID: 39063129 PMCID: PMC11277090 DOI: 10.3390/ijms25147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Successful human pregnancy needs several highly controlled steps to guarantee an oocyte's fertilization, the embryo's pre-implantation development, and its subsequent implantation into the uterine wall. The subsequent placenta development ensures adequate fetal nutrition and oxygenation, with the trophoblast being the first cell lineage to differentiate during this process. The placenta sustains the growth of the fetus by providing it with oxygen and nutrients and removing waste products. It is not surprising that issues with the early development of the placenta can lead to common pregnancy disorders, such as recurrent miscarriage, fetal growth restriction, pre-eclampsia, and stillbirth. Understanding the normal development of the human placenta is essential for recognizing and contextualizing any pathological aberrations that may occur. The effects of these issues may not become apparent until later in pregnancy, during the mid or advanced stages. This review discusses the process of the embryo implantation phase, the molecular mechanisms involved, and the abnormalities in those mechanisms that are thought to contribute to the development of pre-eclampsia. The review also covers the histological hallmarks of pre-eclampsia as found during the examination of placental tissue from pre-eclampsia patients.
Collapse
Affiliation(s)
- Anna Gusella
- Pathology Unit, Department of Diagnostic Services, ULLS 6 Euganea, 35131 Padova, Italy;
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy
| | - Cinzia Giacometti
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| |
Collapse
|
4
|
Perna A, Hay E, Lucariello A, Scala B, De Blasiis P, Komici K, Sgambati E, Guerra G, Baldi A, De Luca A. GATA3 and TGF-β in normal placenta and pre-eclampsia. Tissue Cell 2024; 88:102402. [PMID: 38759523 DOI: 10.1016/j.tice.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
GATA3 plays critical roles in the development and function of various tissues and organs throughout the body. Likewise, TGF-β signaling is critical for placental development and can interact with GATA3. We aimed to investigate the involvement of the multifunctional cytokine and transcription factor in trophoblast development. By using immunohistochemistry, we evaluated the localization and expression level of GATA3 and TGF-β in placentas at term of normal pregnancy and with pre-eclampsia. Up-regulation of both GATA3 and TGF-β was observed in pathological placentas, with localization in the villus epithelium (syncytiotrophoblast) stroma and decidua. Our data show altered expression of TGF-β and GATA3, which downstream could lead to a cascade of events that negatively influence trophoblast development and contribute to the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples 80133, Italy
| | - Beatrice Scala
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Klara Komici
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
5
|
Saadeldin IM, Ehab S, Noreldin AE, Swelum AAA, Bang S, Kim H, Yoon KY, Lee S, Cho J. Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction. J Vet Sci 2024; 25:e40. [PMID: 38834510 PMCID: PMC11156602 DOI: 10.4142/jvs.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. OBSERVATIONS This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. CONCLUSIONS AND RELEVANCE This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.
Collapse
Affiliation(s)
- Islam Mohamed Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 11341, Egypt
| | - Ahmed Elsayed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour 22511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hyejin Kim
- Division in Biomedical Art, Department of Fine Art, Incheon Catholic University Graduate School, Incheon 21986, Korea
| | - Ki Young Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Yang Y, Jia W, Luo Z, Li Y, Liu H, Fu L, Li J, Jiang Y, Lai J, Li H, Saeed BJ, Zou Y, Lv Y, Wu L, Zhou T, Shan Y, Liu C, Lai Y, Liu L, Hutchins AP, Esteban MA, Mazid MA, Li W. VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification. Nat Commun 2024; 15:583. [PMID: 38233381 PMCID: PMC10794710 DOI: 10.1038/s41467-024-44780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.
Collapse
Affiliation(s)
- Yueli Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Lixin Fu
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Yu Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Haiwei Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Babangida Jabir Saeed
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Zou
- BGI Research, Shenzhen, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Ting Zhou
- Stem Cell Research Facility, Sloan Kettering Institute, New York, NY, USA
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Yiwei Lai
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Longqi Liu
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Research, Hangzhou, China.
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| |
Collapse
|
7
|
Jasik KP, Kleczka A, Franielczyk A. Histopathological Aspects of the Influence of Babesia microti on the Placentas of Infected Female Rats. Vet Sci 2024; 11:18. [PMID: 38250924 PMCID: PMC10819886 DOI: 10.3390/vetsci11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Babesiosis is perceived mainly an animal disease; however, awareness that Babesia spp. parasites that can cause diseases in humans is increasing significantly. Babesiosis is spread by the bite of an infected tick (Ixodes spp.), but it can also be transmitted by transfusion of infected blood and from an infected mother to her child during pregnancy or childbirth. The parasites multiply in the bloodstream and destroy red blood cells. This study aimed to assess the influence of Babesia microti on the histological structure of the placenta. Histopathological material collected from pregnant rats infected with Babesia microti was used in the experiment. Microscopic images of the placentas were assessed by Mallory staining and by using methylene blue-stained semi-thin sections. In addition, FISH was used to detect parasite DNA. The presence of piroplasms in both maternal and fetal vessels was demonstrated. Babesia microti infection caused vacuolization of syncytioblasts and cytotrophoblasts, accumulation of collagen fibers in placental villi, and increased adhesion of erythrocytes to the vascular walls. These results indicate that Babesia may influence the course of pregnancy and invite further research on the mechanism of piroplasm penetration into cells.
Collapse
Affiliation(s)
- Krzysztof P. Jasik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
8
|
Pirković A, Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Bojić-Trbojević Ž, Dekanski D. Oleuropein Stimulates Migration of Human Trophoblast Cells and Expression of Invasion-Associated Markers. Int J Mol Sci 2023; 25:500. [PMID: 38203672 PMCID: PMC10779171 DOI: 10.3390/ijms25010500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Successful pregnancy establishment requires highly synchronized cross talk between the invasive trophoblast cells and the receptive maternal endometrium. Any disturbances in this tightly regulated process may lead to pregnancy complications. Local factors such as nutrients, hormones, cytokines and reactive oxygen species modulate the invasion of extravillous trophoblasts through critical signaling cascades. Epidemiological studies strongly indicate that a Mediterranean diet can significantly impact molecular pathways during placentation. Therefore, the aim of the current study was to examine whether oleuropein (OLE), one of the main compounds of the Mediterranean diet, may influence trophoblast cell adhesion and migration, as well as the expression of invasion-associated molecular markers and inflammatory pathways fostering these processes. HTR-8/SVneo cells were incubated with OLE at selected concentrations of 10 and 100 µM for 24 h. Results showed that OLE did not affect trophoblast cell viability, proliferation and adhesion after 24 h in in vitro treatment. The mRNA expression of integrin subunits α1, α5 and β1, as well as matrix-degrading enzymes MMP-2 and -9, was significantly increased after treatment with 10 µM OLE. Furthermore, OLE at a concentration of 10 µM significantly increased the protein expression of integrin subunits α1 and β1. Also, OLE inhibited the activation of JNK and reduced the protein expression of COX-2. Finally, a lower concentration of OLE 10 µM significantly stimulated migration of HTR-8/SVneo cells. In conclusion, the obtained results demonstrate the effects of OLE on the function of trophoblast cells by promoting cell migration and stimulating the expression of invasion markers. As suggested from results, these effects may be mediated via inhibition of the JNK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (A.P.); (M.J.K.); (A.V.); (M.N.-A.); (Ž.B.-T.)
| |
Collapse
|
9
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
10
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The Role of Interferon (IFN)-γ in Extravillous Trophoblast Cell (EVT) Invasion and Preeclampsia Progression. Reprod Sci 2022; 30:1462-1469. [PMID: 36289172 DOI: 10.1007/s43032-022-01110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
The involvement of the immune system in pregnancy is a controversial subject. The functions of T helper (Th) 1 and Th2 cells have been proposed, that Th1 cytokines promoting allograft rejection may impair pregnancy, whereas Th2-type cytokines suppressing Th1 responses improve allograft tolerance and hence embryonic survival. Maternal-fetal tolerance begins in the uterus; therefore, optimal adaptation to the fetus is the result of a complex interference. The invasion of extravillous trophoblast cells (EVTs) into the decidua and the inner third of the myometrium is essential for a healthy pregnancy. The mechanisms that influence trophoblast invasion are unknown; however, cytokines from uterine natural killer (uNK) cells, NKT cells, macrophages, and T cells appear to be involved. All these cells are major sources of interferon gamma (IFN-γ). Recent studies have shown that IFN-γ can inhibit EVT invasion via a mechanism dependent on an increase in EVT apoptosis and a decrease in matrix metalloproteinases (MMPs). Regarding controversies in this context, this study aimed to comprehensively review the role of IFN-γ and IFN-γ-producing cells in EVT invasion, successful pregnancy, and preeclampsia.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Interaction between Mesenchymal Stem Cells and the Immune System in Rheumatoid Arthritis. Pharmaceuticals (Basel) 2022; 15:ph15080941. [PMID: 36015088 PMCID: PMC9416102 DOI: 10.3390/ph15080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes damage to joints. This review focuses on the possibility of influencing the disease through immunomodulation by mesenchymal stem cells (MSCs). There is an occurrence of rheumatoid factor and RA-specific autoantibodies to citrullinated proteins in most patients. Citrulline proteins have been identified in the joints of RA patients, and are considered to be the most suitable candidates for the stimulation of anti-citrulline protein antibodies production. Fibroblast-like proliferating active synoviocytes actively promote inflammation and destruction in the RA joint, in association with pro-inflammatory cells. The inflammatory process may be suppressed by MSCs, which are a population of adherent cells with the following characteristic phenotype: CD105+, CD73+, CD90+, CD45−, CD34− and HLA DR−. Following the stimulation process, MSCs are capable of immunomodulatory action through the release of bioactive molecules, as well as direct contact with the cells of the immune system. Furthermore, MSCs show the ability to suppress natural killer cell activation and dendritic cells maturation, inhibit T cell proliferation and function, and induce T regulatory cell formation. MSCs produce factors that suppress inflammatory processes, such as PGE2, TGF-β, HLA-G5, IDO, and IL-10. These properties suggest that MSCs may affect and suppress the excessive inflammation that occurs in RA. The effect of MSCs on rheumatoid arthritis has been proven to be a suitable alternative treatment thanks to successful experiments and clinical studies.
Collapse
|
12
|
Gonçalves BM, Graceli JB, da Rocha PB, Tilli HP, Vieira EM, de Sibio MT, Peghinelli VV, Deprá IC, Mathias LS, Olímpio RMC, Belik VC, Nogueira CR. Placental model as an important tool to study maternal-fetal interface. Reprod Toxicol 2022; 112:7-13. [PMID: 35714933 DOI: 10.1016/j.reprotox.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
The placenta is a temporary organ that plays critical roles at the maternal-fetal interface. Normal development and function of the placenta is dependent on hormonal signaling pathways that make the placenta a target of endocrine disrupting chemical (EDC) action. Studies showing association between prenatal exposure, hormone disruption, and reproductive damage indicate that EDCs are developmentally toxic and can impact future generations. In this context, new placental models (trophoblast-derived cell lines, organotypic or 3D cell models, and physiologically based kinetic models) have been developed in order to create new approach methodology (NAM) to assess and even prevent such disastrous toxic harm in future generations. With the widespread discouragement of conducting animal studies, it has become irrefutable to develop in vitro models that can serve as a substitute for in vivo models. The goal of this review is to discuss the newest in vitro models to understand the maternal-fetal interface and predict placental development, physiology, and dysfunction generated by failures in molecular hormone control mechanisms, which, consequently, may change epigenetic programming to increase susceptibility to metabolic and other disorders in the offspring. We summarize the latest placental models for developmental toxicology studies, focusing mainly on three-dimensional (3D) culture models.
Collapse
Affiliation(s)
- Bianca M Gonçalves
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitória, ES, Brazil
| | - Paula B da Rocha
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Helena P Tilli
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ester M Vieira
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria T de Sibio
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vinícius V Peghinelli
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Igor C Deprá
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas S Mathias
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Regiane M C Olímpio
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Virgínia C Belik
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Célia R Nogueira
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|