1
|
Lama SBC, Pérez-González LA, Kosoglu MA, Dennis R, Ortega-Quijano D. Physical Treatments and Therapies for Androgenetic Alopecia. J Clin Med 2024; 13:4534. [PMID: 39124800 PMCID: PMC11313483 DOI: 10.3390/jcm13154534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Androgenetic alopecia, the most common cause of hair loss affecting both men and women, is typically treated using pharmaceutical options, such as minoxidil and finasteride. While these medications work for many individuals, they are not suitable options for all. To date, the only non-pharmaceutical option that the United States Food and Drug Administration has cleared as a treatment for androgenetic alopecia is low-level laser therapy (LLLT). Numerous clinical trials utilizing LLLT devices of various types are available. However, a myriad of other physical treatments for this form of hair loss have been reported in the literature. This review evaluated the effectiveness of microneedling, pulsed electromagnetic field (PEMF) therapy, low-level laser therapy (LLLT), fractional laser therapy, and nonablative laser therapy for the treatment of androgenetic alopecia (AGA). It also explores the potential of multimodal treatments combining these physical therapies. The majority of evidence in the literature supports LLLT as a physical therapy for androgenetic alopecia. However, other physical treatments, such as nonablative laser treatments, and multimodal approaches, such as PEMF-LLLT, seem to have the potential to be equally or more promising and merit further exploration.
Collapse
Affiliation(s)
| | | | | | - Robert Dennis
- Biomedical Engineering Departments, UNC Chapel Hill and NC State University, Raleigh, NC 27695, USA;
| | - Daniel Ortega-Quijano
- Dermatology Department, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (L.A.P.-G.); (D.O.-Q.)
- Hair Disorders Unit, Grupo Pedro Jaén, 28006 Madrid, Spain
| |
Collapse
|
2
|
López de Mingo I, Rivera González MX, Maestú Unturbe C. The Cellular Response Is Determined by a Combination of Different ELF-EMF Exposure Parameters: A Scope Review. Int J Mol Sci 2024; 25:5074. [PMID: 38791113 PMCID: PMC11121623 DOI: 10.3390/ijms25105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Since the establishment of regulations for exposure to extremely low-frequency (0-300) Hz electromagnetic fields, scientific opinion has prioritised the hypothesis that the most important parameter determining cellular behaviour has been intensity, ignoring the other exposure parameters (frequency, time, mode, waveform). This has been reflected in the methodologies of the in vitro articles published and the reviews in which they are included. A scope review was carried out, grouping a total of 79 articles that met the proposed inclusion criteria and studying the effects of the different experiments on viability, proliferation, apoptosis, oxidative stress and the cell cycle. These results have been divided and classified by frequency, intensity, exposure time and exposure mode (continuous/intermittent). The results obtained for each of the processes according to the exposure parameter used are shown graphically to highlight the importance of a good methodology in experimental development and the search for mechanisms of action that explain the experimental results, considering not only the criterion of intensity. The consequence of this is a more than necessary revision of current exposure protection regulations for the general population based on the reductionist criterion of intensity.
Collapse
Affiliation(s)
- Isabel López de Mingo
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Marco-Xavier Rivera González
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Ceferino Maestú Unturbe
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Centro de Investigación en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Cecerska-Heryć E, Goszka M, Gliźniewicz M, Grygorcewicz B, Serwin N, Stodolak P, Słodzińska W, Birger R, Polikowska A, Budkowska M, Rakoczy R, Dołęgowska B. The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets. Int J Mol Sci 2024; 25:3644. [PMID: 38612456 PMCID: PMC11012199 DOI: 10.3390/ijms25073644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Platelets are actively involved in tissue injury site regeneration by producing a wide spectrum of platelet-derived growth factors such as PDGF (platelet-derived growth factor), IGF-1 (insulin-like growth factor), TGF-β1 (transforming growth factor β), FGF (fibroblast growth factor), etc. A rotating magnetic field (RMF) can regulate biological functions, including reduction or induction regarding inflammatory processes, cell differentiation, and gene expression, to determine the effect of an RMF on the regenerative potential of platelets. The study group consisted of 30 healthy female and male volunteers (n = 15), from which plasma was collected. A portion of the plasma was extracted and treated as an internal control group. Subsequent doses of plasma were exposed to RMF at different frequencies (25 and 50 Hz) for 1 and 3 h. Then, the concentrations of growth factors (IGF-1, PDGF-BB, TGF-β1, and FGF-1) were determined in the obtained material by the ELISA method. There were statistically significant differences in the PDGF-BB, TGF-β1, IGF-1, and FGF-1 concentrations between the analyzed groups. The highest concentration of PDGF-BB was observed in the samples placed in RMF for 1 h at 25 Hz. For TGF-β1, the highest concentrations were obtained in the samples exposed to RMF for 3 h at 25 Hz and 1 h at 50 Hz. The highest concentrations of IGF-1 and FGF-1 were shown in plasma placed in RMF for 3 h at 25 Hz. An RMF may increase the regenerative potential of platelets. It was noted that female platelets may respond more strongly to RMF than male platelets.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Bartłomiej Grygorcewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
- Department of Forensic Genetic, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Weronika Słodzińska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Radosław Birger
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| |
Collapse
|
4
|
Li Z, Zhang Y, Li Y, Xing S, Li S, Lyu J, Ban Z. PROSER2 is a poor prognostic biomarker for patients with osteosarcoma and promotes proliferation, migration and invasion of osteosarcoma cells. Exp Ther Med 2022; 24:750. [PMID: 36561964 PMCID: PMC9748638 DOI: 10.3892/etm.2022.11686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Proline- and serine-rich 2 (PROSER2) is encoded by the 47th open reading frame on human chromosome 10. Bioinformatic analysis has shown PROSER2 was significantly correlated with prognostic outcome of osteosarcoma patients. Its role in the progression and metastasis of human osteosarcoma has not been elucidated until now. Bioinformatics analysis was performed on 101 patients with osteosarcoma from The Cancer Genome Atlas database. High levels of PROSER2 were associated with a poor prognosis in patients with osteosarcoma. PROSER2 expression was significantly upregulated in clinical specimens from patients with osteosarcoma and osteosarcoma cell lines. MTT assay was performed to test the cell viability and Transwell assay was used to test the migration and invasion of MG63 cells. PROSER2 knockdown inhibited the viability, migration and invasion of MG63 cells. Gene Set Enrichment Analysis and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes were primarily involved in 'calcium signaling pathway' and 'Wnt signaling' in patients with osteosarcoma and high PROSER2 expression. Western blotting analysis revealed that PROSER2 regulated migration and invasion of osteosarcoma via the Wnt/nuclear factor of activated T-cells (NFAT)c1 signaling pathway. In conclusion, PROSER2 promoted the proliferation, migration and invasion of osteosarcoma cells via the Wnt/Ca2+/NFATc1 signaling pathway by increasing nuclear localization of NFATc1.
Collapse
Affiliation(s)
- Zhengjiang Li
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yan Zhang
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yongkui Li
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Shunqiang Li
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Jing Lyu
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Zhaonan Ban
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China,Correspondence to: Dr Zhaonan Ban, Department of Orthopedics, Chengdu Fifth People's Hospital, 33 Mashi Street, Wenjiang, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|