1
|
Xu A, Shen H, Mei S, Wang Z, Xie Q, Cui H, Chu Y, Feng B. Down-regulation of microRNA-382-5p reduces neuropathic pain by targeting regulation of dual specificity phosphatase-1. Korean J Pain 2024; 37:320-331. [PMID: 39344360 PMCID: PMC11450301 DOI: 10.3344/kjp.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Background MicroRNA (miRNA) plays a crucial role in neuropathic pain (NP) by targeting mRNAs. This study aims to analyze the regulatory function and mechanism of miR-382-5p/dual specificity phosphatase-1 (DUSP1) axis in NP. Methods We utilized rats with chronic constriction injury (CCI) of the sciatic nerve as the NP model. The levels of miR-382-5p and DUSP1 were reduced by intrathecal injection of lentiviral interference vectors targeting miR-382-5p and DUSP1. The mRNA levels of miR-382-5p and DUSP1 in the dorsal root ganglions (DRGs) were measured by RT-qPCR assay. The pain behavior was evaluated by mechanical nociceptive sensitivity and thermal nociceptive sensitivity. The expression levels of interleukin-6 (IL)-6, IL-1β, and tumor necrosis factor-α in the DRGs were analyzed by ELISA assay. The targeting relationship between miR-382-5p and DUSP1 was verified by DLR assay and RIP assay. Results Compared to the Sham group, the CCI rats exhibited higher levels of miR-382-5p and lower levels of DUSP1. Overexpression of miR-382-5p significantly decreased DUSP1 levels. Reducing miR-382-5p levels can lower the mechanical nociceptive sensitivity and thermal nociceptive sensitivity of CCI rats and inhibit the over-activation of pro-inflammatory factors. Reduced miR-382-5p levels decreased NP in CCI rats. DUSP1 is the target of miR-382-5p, and down-regulation of DUSP1 reverses the inhibitory effect of reduced miR-382-5p levels on NP. Conclusions Down-regulation of miR-382-5p inhibits the over-activation of pro-inflammatory factors by targeting and regulating the expression of DUPS1, thereby alleviating NP.
Collapse
Affiliation(s)
- Anjie Xu
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huili Shen
- Department of Anaesthesia and Surgery, Hebei Maternity Hospital, Shijiazhuang, China
| | - Shasha Mei
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Zhongwei Wang
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, China
| | - Qiuyi Xie
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, China
- Shandong Second Medical University, Weifang, China
| | - Huaqing Cui
- Department of Anesthesiology, Dongying Hospital of Traditional Chinese Medicine, Dongying, China
| | - Yunchao Chu
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, China
| | - Baihe Feng
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Opara J, Dymarek R, Sopel M, Paprocka-Borowicz M. Extracorporeal Shock Wave Therapy (eSWT) in Spinal Cord Injury-A Narrative Review. J Clin Med 2024; 13:5112. [PMID: 39274325 PMCID: PMC11396197 DOI: 10.3390/jcm13175112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Injury of the spinal cord causes motor and sensory dysfunction as well as pathological reflexes, leading to paraplegia or tetraplegia. The sequelae of traumatic spinal cord injury (SCI) are a significant burden and impact on healthcare systems. Despite constant progress in medicine, traumatic SCI still remains irreversible. To date, no satisfying treatment that can enable neuronal regeneration and recovery of function at the damaged level has been found. Hundreds of experiments have been conducted on various possibilities of influencing spinal regeneration; some of them have yielded promising results, but unfortunately, the successes obtained in experimental animals have not translated into humans. METHODS This narrative review article presents the application of extracorporeal shock wave therapy (eSWT) in patients with SCI. The article has been divided into parts: 1) use of extracorporeal shock wave therapy for regeneration of the spinal cord after traumatic spinal cord injury; 2) application of extracorporeal shock wave therapy in spasticity after spinal cord injury. In both cases, the hypotheses of possible mechanisms of action will be described. RESULTS AND CONCLUSIONS A small number of clinical trials have demonstrated the potential of eSWT to influence the regeneration of the spine, as an innovative, safe, and cost-effective treatment option for patients with SCI. Some reports have shown that eSWT can improve spasticity, walking ability, urological function, quality of life, and independence in daily life.
Collapse
Affiliation(s)
- Józef Opara
- Department of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Robert Dymarek
- Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mirosław Sopel
- Faculty of Medicine, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland
| | | |
Collapse
|
3
|
Kurihara K, Sasaki M, Nagahama H, Obara H, Fukushi R, Hirota R, Yoshimoto M, Teramoto A, Kocsis JD, Yamashita T, Honmou O. Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury. Brain Res 2023; 1817:148484. [PMID: 37442249 DOI: 10.1016/j.brainres.2023.148484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Spinal cord injury (SCI) can cause paralysis with a high disease burden with limited treatment options. A single intravenous infusion of mesenchymal stem cells (MSCs) improves motor function in rat SCI models, possibly through the induction of axonal sprouting and remyelination. Repeated infusions (thrice at weekly intervals) of MSCs were administered to rats with chronic SCI to determine if multiple-dosing regimens enhance motor improvement. Chronic SCI rats were randomized and infused with vehicle (vehicle), single MSC injection at week 6 (MSC-1) or repeatedly injections of MSCs at 6, 7, and 8 weeks (MSC-3) after SCI induction. In addition, a single high dose of MSCs (HD-MSC) equivalent to thrice the single dose was infused at week 6. Locomotor function, light and electron microscopy, immunohistochemistry and ex vivo diffusion tensor imaging were performed. Repeated infusion of MSCs (MSC-3) provided the greatest functional recovery compared to single and single high-dose infusions. The density of remyelinated axons in the injured spinal cord was the greatest in the MSC-3 group, followed by the MSC-1, HD-MSC and vehicle groups. Increased sprouting of the corticospinal tract and serotonergic axon density was the greatest in the MSC-3 group, followed by MSC-1, HD-MSC, and vehicle groups. Repeated infusion of MSCs over three weeks resulted in greater functional improvement than single administration of MSCs, even when the number of infused cells was tripled. MSC-treated rats showed axonal sprouting and remyelination in the chronic phase of SCI.
Collapse
Affiliation(s)
- Kota Kurihara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Hisashi Obara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryunosuke Fukushi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Zeng EZ, Chen I, Chen X, Yuan X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022; 10:2485. [PMID: 36289747 PMCID: PMC9598823 DOI: 10.3390/biomedicines10102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles (50-1000 nm) that can be secreted by all cell types. Microvesicles and exosomes are the major subsets of EVs that exhibit the cell-cell communications and pathological functions of human tissues, and their therapeutic potentials. To further understand and engineer EVs for cell-free therapy, current developments in EV biogenesis and secretion pathways are discussed to illustrate the remaining gaps in EV biology. Specifically, microRNAs (miRs), as a major EV cargo that exert promising therapeutic results, are discussed in the context of biological origins, sorting and packing, and preclinical applications in disease progression and treatments. Moreover, advanced detection and engineering strategies for exosomal miRs are also reviewed. This article provides sufficient information and knowledge for the future design of EVs with specific miRs or protein cargos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Isabelle Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Los Altos High School, Los Altos, CA 94022, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 95616, USA
| |
Collapse
|