1
|
V Gadhave P, V Sutar G, Sajane SJ, Redasani VK, Das K, Prasad P D, Alobid S, Ibrahim Almoteer A, Imam Rabbani S, Yasmin F, Gilkaramenthi R, Abdulrazaq AlAnazi M, Jameel Alshamrani H, Asdaq SMB. Protective effects of vanillic acid on letrozole-induced polycystic ovarian syndrome: A comprehensive study in female wistar rats. Saudi Pharm J 2024; 32:101953. [PMID: 38288132 PMCID: PMC10823135 DOI: 10.1016/j.jsps.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is one of the known causes of anovulatory fertility in the world. Previous research has linked oxidative stress could contribute to PCOS, and vanillic acid has shown antioxidant potential. Hence, the present study evaluated the effect of vanillic acid on letrozole-induced polycystic ovarian syndrome in female rats. Materials and methods PCOS was induced in Wistar female rats with letrozole (1 mg/kg, orally) in carboxymethoxycellulose (1 % w/v), administered for 21 days. After induction, the standard group received clomiphene citrate (1 mg/kg, orally) while other treatment groups were administered with vanillic acid at doses 25, 50, and 100 mg/kg, orally for 15 days, and without treatment was considered a negative control group. Different parameters studied were body weight, ovary weight, blood glucose, lipid profile, hormonal levels [luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone], markers for oxidative stress (superoxide dismutase, reduced glutathione, catalase, and malonaldehyde), and histopathology of the ovary. Statistical analysis was done for the results and p < 0.05 was considered to indicate the significance. Results Vanillic acid-treated animals showed a concentration-dependent activity on the tested parameters. The highest tested dose (100 mg/kg) produced a more prominent effect in significantly (P < 0.001) decreasing the body weight, and ovary weight and improving the hormonal imbalance. Also, vanillic acid significantly (P < 0.01) reduced elevated blood sugar and lipid levels. Additionally, vanillic acid reduced oxidative stress significantly (P < 0.001) in the ovaries of female rats. Histopathological reports showed a reduction in cystic follicles and appearance of normal healthy follicles at different stages of development after the administration of vanillic acid. Furthermore, these effects were observed to be comparable with those recorded for standard drug, clomiphene. Conclusion The current study data suggests that vanillic acid has protected the letrozole-induced polycystic ovarian syndrome. In the event of several side effects associated with conventional treatments used for PCOS, the findings of this study suggest the promising role of vanillic acid. More research in this direction might identify the true potency of vanillic acid in the treatment of PCOS.
Collapse
Affiliation(s)
- Pradnya V Gadhave
- YSPM’s Yashoda Technical Campus, Faculty of Pharmacy, Satara-415011, Maharashtra, India
| | - Guruprasad V Sutar
- Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra 416 301, India
| | - Sachin J Sajane
- Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra 416 301, India
| | | | - Kuntal Das
- Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore 560090, India
| | - Dharani Prasad P
- Dept of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, Sree Sainath Nagar, Tirupati, Chittor AP-517102, India
| | - Saad Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Farhana Yasmin
- Department of Computer Science, College of Applied Sciences, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Rafiulla Gilkaramenthi
- Department of Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, 13713 Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
2
|
Campo H, Zha D, Pattarawat P, Colina J, Zhang D, Murphy A, Yoon J, Russo A, Rogers HB, Lee HC, Zhang J, Trotter K, Wagner S, Ingram A, Pavone ME, Dunne SF, Boots CE, Urbanek M, Xiao S, Burdette JE, Woodruff TK, Kim JJ. A new tissue-agnostic microfluidic device to model physiology and disease: the lattice platform. LAB ON A CHIP 2023; 23:4821-4833. [PMID: 37846545 PMCID: PMC11181516 DOI: 10.1039/d3lc00378g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
To accurately phenocopy human biology in vitro, researchers have been reducing their dependence on standard, static two-dimensional (2D) cultures and instead are moving towards three-dimensional (3D) and/or multicellular culture techniques. While these culture innovations are becoming more commonplace, there is a growing body of research that illustrates the benefits and even necessity of recapitulating the dynamic flow of nutrients, gas, waste exchange and tissue interactions that occur in vivo. However, cost and engineering complexity are two main factors that hinder the adoption of these technologies and incorporation into standard laboratory workflows. We developed LATTICE, a plug-and-play microfluidic platform able to house up to eight large tissue or organ models that can be cultured individually or in an interconnected fashion. The functionality of the platform to model both healthy and diseased tissue states was demonstrated using 3D cultures of reproductive tissues including murine ovarian tissues and human fallopian tube explants (hFTE). When exogenously exposed to pathological doses of gonadotropins and androgens to mimic the endocrinology of polycystic ovarian syndrome (PCOS), subsequent ovarian follicle development, hormone production and ovulation copied key features of this endocrinopathy. Further, hFTE cilia beating decreased significantly only when experiencing continuous media exchanges. We were then able to endogenously recreate this phenotype on the platform by dynamically co-culturing the PCOS ovary and hFTE. LATTICE was designed to be customizable with flexibility in 3D culture formats and can serve as a powerful automated tool to enable the study of tissue and cellular dynamics in health and disease in all fields of research.
Collapse
Affiliation(s)
- Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Didi Zha
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jose Colina
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Delong Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Alina Murphy
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Julia Yoon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Angela Russo
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hunter B Rogers
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jiyang Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Katy Trotter
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Sarah Wagner
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Asia Ingram
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Sara Fernandez Dunne
- High-throughput Analysis Laboratory, Northwestern University, Evanston, IL 60628, USA
| | - Christina E Boots
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Margrit Urbanek
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI 48824, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Daniele S, Chelucci E, Scarfò G, Artini PG. Molecular Research on Polycystic Ovary Syndrome (PCOS). Biomedicines 2023; 11:biomedicines11051358. [PMID: 37239028 DOI: 10.3390/biomedicines11051358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder with a prevalence of between 5% and 20% that commonly affects childbearing-aged women [...].
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Elisa Chelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Wu PY, Tan X, Wang M, Zheng X, Lou JH. Selenium supplementation for polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Gynecol Endocrinol 2022; 38:928-934. [PMID: 36050880 DOI: 10.1080/09513590.2022.2118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction: The efficacy of selenium supplementation was elusive for polycystic ovary syndrome. This meta-analysis aimed to explore the efficacy of selenium supplementation for polycystic ovary syndrome. Methods: PubMed, EMbase, Web of science, EBSCO, Cochrane library database, CNKI, Chongqing VIP database and Wanfang databases have been searched through July 2022 and we included randomized controlled trials (RCTs) reporting the effect of selenium supplementation versus placebo in patients with polycystic ovary syndrome. Results: Five RCTs were included in the meta-analysis. Compared with placebo group for polycystic ovary syndrome, selenium supplementation was associated with significantly reduced total testosterone (SMD=-0.42; 95% CI=-0.78 to -0.06; p = 0.02) and cholesterol (SMD=-0.71; 95% CI=-1.41 to -0.02; p = 0.04), but revealed no remarkable influence on SHBG (SMD=-0.52; 95% CI=-1.29 to 0.25; p = 0.19), triglyceride (SMD=-1.45; 95% CI=-3.62 to 0.73; p = 0.19), LDL (SMD=-0.17; 95% CI=-0.72 to 0.37; p = 0.53), FPG (SMD=-0.95; 95% CI=-3.72 to 1.82; p = 0.50) or HOMA-IR (SMD=-0.51; 95% CI=-3.79 to 2.77; p = 0.76). Conclusions: Selenium supplementation may be able to improve the metabolic response for polycystic ovary syndrome, and this finding should be interpreted with caution.
Collapse
Affiliation(s)
- Pei-Yu Wu
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Xianzu Tan
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Min Wang
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Xiangqing Zheng
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Jin-He Lou
- Department of Health Management Center, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
5
|
Babayev E, Xu M, Shea LD, Woodruff TK, Duncan FE. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Mol Hum Reprod 2022; 28:6693628. [PMID: 36069625 PMCID: PMC9802420 DOI: 10.1093/molehr/gaac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.
Collapse
Affiliation(s)
| | | | - Lonnie D Shea
- Member of the Oncofertility Consortium, Michigan State University, East Lansing, MI, USA,Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| | - Francesca E Duncan
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| |
Collapse
|