1
|
Gerelkhuu Z, Park S, Lee KH, Kim YC, Kwon SJ, Song KH, Kim ES, Song YG, Park YS, Ahn JY, Choi JY, Choi WS, Bae S, Kim SH, Kim SW, Kwon KT, Jeong HW, Peck KR, Kang ES, Koh JY, Ko JH, Yoon TH. Overcoming the age-dependent SARS-CoV-2 vaccine response through hybrid immunity: analysis of humoral and cellular immunity with mass cytometry profiling. Immun Ageing 2024; 21:51. [PMID: 39080742 PMCID: PMC11289962 DOI: 10.1186/s12979-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Age-dependent immune responses to coronavirus disease 2019 (COVID-19) vaccinations and breakthrough infections (BIs) in young and middle-aged individuals are unclear. METHODS This nationwide multicenter prospective cohort study analyzed immune responses in participants of the ChAdOx1 (ChAd)-ChAd-mRNA vaccine group using cytometry by time-of-flight, anti-spike protein antibody (Sab) and anti-nucleocapsid antibody (Nab) titers, plaque reduction neutralization tests (PRNTs), and interferon-gamma (IFN-γ) release assays at various time points. RESULTS We evaluated 347 participants with an average age of 38.9 ± 9.4 years (range: 21-63). There was a significant inverse correlation between age and Sab levels after the second dose (slope - 14.96, P = 0.032), and this was more pronounced after the third dose (slope - 208.9, P < 0.001). After BIs, older participants showed significantly higher Sab titers (slope 398.8, P = 0.001), reversing the age-related decline observed post-vaccination. This reversal was also observed in PRNTs against wild-type SARS-CoV-2 and the BA.1 and BA.5 variants. IFN-γ responses increased markedly after the third dose and Bis, but showed a weak positive correlation with age, without statistical significance. Immune cell profiling revealed an age-dependent decrease in the proportions of B-cell lineage cells. The proportions of naive CD4+ and CD8+ T cells were inversely correlated with age, whereas the proportions of mature T cell subsets with memory function, including memory CD4+ T, CD8+ TEM, CD8+ TEMRA, and TFH cells, increased with age. CONCLUSIONS Age-dependent waning of the serologic response to COVID-19 vaccines occurred even in middle-aged individuals, but was reversed after BIs. IFN-γ responses were preserved, compensating for the decrease in naive T cell populations, with an increase in memory T cell populations.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
| | - Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | | | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Park
- Division of Infectious Diseases, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin-Woo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Tae Hyun Yoon
- Department of Chemistry, Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
- Yoon Idea Lab. Co. Ltd, Seoul, Republic of Korea.
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
- Institute of Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Alonso R, Gil-Manso S, Catalán P, Sánchez-Arcilla I, Marzola M, Correa-Rocha R, Muñoz P, Pion M. Neutralizing antibody levels detected early after mRNA-based vaccination do not predict by themselves subsequent breakthrough infections of SARS-CoV-2. Front Immunol 2024; 15:1341313. [PMID: 38404583 PMCID: PMC10884961 DOI: 10.3389/fimmu.2024.1341313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
The development of mRNA vaccines represented a significant achievement in response to the global health crisis during the SARS-CoV-2 pandemic. Evaluating vaccine efficacy entails identifying different anti-SARS-CoV-2 antibodies, such as total antibodies against the Receptor Binding Domain (RBD) of the S-protein, or neutralizing antibodies (NAbs). This study utilized an innovative PETIA-based kit to measure NAb, and the investigation aimed to assess whether levels of anti-RBD IgG and NAb uniformly measured 30 days after vaccination could predict individuals at a higher risk of subsequent infection in the months following vaccination. Among a cohort of healthy vaccinated healthcare workers larger than 6,000, 12 mRNA-1273- and 115 BNT162b2-vaccinated individuals contracted infections after the first two doses. The main finding is that neither anti-RBD IgG nor NAb levels measured at day 30 post-vaccination can be used as predictors of breakthrough infections (BI). Therefore, the levels of anti-SARS-CoV-2 antibodies detected shortly after vaccination are not the pivotal factors involved in antiviral protection, and other characteristics must be considered in understanding protection against infection. Furthermore, the levels of anti-RBD and NAbs followed a very similar pattern, with a correlation coefficient of r = 0.96. This robust correlation would justify ceasing the quantification of NAbs, as the information provided by both determinations is highly similar. This optimization would help allocate resources more efficiently and speed up the determination of individuals' humoral immunity status.
Collapse
Affiliation(s)
- Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Gil-Manso
- Advanced ImmunoRegulation Group, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pilar Catalán
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain
| | - Ignacio Sánchez-Arcilla
- Department of Labour Risks Prevention, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marco Marzola
- Department of Labour Risks Prevention, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Marjorie Pion
- Advanced ImmunoRegulation Group, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
3
|
Erice A, Prieto L, Caballero C. Long-Term Analyses of SARS-CoV-2 Humoral and T Cell Responses and Breakthrough SARS-CoV-2 Infections after Two Doses of BNT162b2 Followed by mRNA-1273 and Bivalent Omicron-Adapted BNT162b2 Vaccines: A Prospective Study over 2 Years in Non-Immunocompromised Individuals. Vaccines (Basel) 2023; 11:1835. [PMID: 38140239 PMCID: PMC10748336 DOI: 10.3390/vaccines11121835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Long-term analyses of the immune response following SARS-CoV-2 mRNA vaccines are essential to determining its characteristics and providing the basis for vaccination strategies. We conducted a prospective study in a cohort of 268 healthy adults followed for >2 years after two doses of BNT162b2. Antibodies targeting the receptor-binding domain of the S1 subunit of the spike of SARS-CoV-2 (anti-RBD) were measured at eight time points; T cell response was analyzed using an interferon-γ release assay. A total of 248 (93%) subjects received mRNA-1273 on month 9; 93 (35%) received the bivalent Omicron-adapted BNT162b2 vaccine between months 19 and 26. Breakthrough infections occurred in 215 (80%) participants, with frequencies unaffected by the additional vaccines. Anti-RBD declined over the initial 9 months, increased after mRNA-1273, and declined gradually thereafter. In 50 (17%) previously infected subjects, anti-RBD levels were significantly higher up to month 9 (p < 0.05) but subsequently declined below those of uninfected individuals. Anti-RBD titers protective against SARS-CoV-2 could not be defined. Most subjects developed a positive T cell response that remained after 26 months. Waning of protection against SARS-CoV-2 infection occurred over time, resulting in non-severe breakthrough infections in most participants. The evolution of anti-RBD suggests modulation of the immune response through immune imprinting.
Collapse
Affiliation(s)
- Alejo Erice
- Department of Internal Medicine, Hospital Asepeyo, 28823 Coslada, Spain
- Unidad de Apoyo a la Investigación, Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (L.P.); (C.C.)
| | - Lola Prieto
- Unidad de Apoyo a la Investigación, Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (L.P.); (C.C.)
| | - Cristina Caballero
- Unidad de Apoyo a la Investigación, Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (L.P.); (C.C.)
- Clinical Diagnostic Laboratory, Hospital Asepeyo, 28823 Coslada, Spain
| |
Collapse
|
4
|
Gil-Manso S, Alonso R, Catalán P, Sánchez-Arcilla I, Marzola M, Correa-Rocha R, Pion M, Muñoz P. IgG anti-RBD levels during 8-month follow-up post-vaccination with BNT162b2 and mRNA-1273 vaccines in healthcare workers: A one-center study. Front Cell Infect Microbiol 2022; 12:1035155. [PMID: 36530428 PMCID: PMC9748346 DOI: 10.3389/fcimb.2022.1035155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Since the COVID-19 outbreak, specific mRNA-based anti-SARS-CoV-2 vaccines have been developed and distributed worldwide. Because this is the first time that mRNA vaccines have been used, there are several questions regarding their capacity to confer immunity and the durability of the specific anti-SARS-CoV-2 response. Therefore, the objective of this study was to recruit a large cohort of healthcare workers from the Gregorio Marañón Hospital vaccinated with the mRNA-1273 or BNT126b2 vaccines and to follow-up on IgG anti-RBD levels at 8 months post-vaccination. Methods We recruited 4,970 volunteers and measured IgG anti-RBD antibodies on days 30 and 240 post-vaccination. Results We observed that both vaccines induced high levels of antibodies on day 30, while a drastic wane was observed on day 240, where mRNA-1273 vaccinated induced higher levels than BNT162b2. Stratifying by vaccine type, age, gender, and comorbidities, we identified that older mRNA-1273-vaccinated volunteers had higher antibody levels than the younger volunteers, contrary to what was observed in the BNT162b2-vaccinated volunteers. Discussion In conclusion, we observed that mRNA-1273 has a higher capacity to induce a humoral response than BNT162b2 and that age is a factor in the specific response.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Advanced ImmunoRegulation Group, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain,*Correspondence: Sergio Gil-Manso, ; Roberto Alonso,
| | - Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain,Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain,CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain,Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain,*Correspondence: Sergio Gil-Manso, ; Roberto Alonso,
| | - Pilar Catalán
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain,Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain,CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain
| | - Ignacio Sánchez-Arcilla
- Department of Labour Risks Prevention, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marco Marzola
- Department of Labour Risks Prevention, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marjorie Pion
- Advanced ImmunoRegulation Group, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain,Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain,CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, Barcelona, Spain,Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|