1
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
2
|
Han D, Wang C, Feng X, Hu L, Wang B, Hu X, Wu J. ALCAT1-Mediated Pathological Cardiolipin Remodeling and PLSCR3-Mediated Cardiolipin Transferring Contribute to LPS-Induced Myocardial Injury. Biomedicines 2024; 12:2013. [PMID: 39335527 PMCID: PMC11428616 DOI: 10.3390/biomedicines12092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiolipin (CL), a critical phospholipid situated within the mitochondrial membrane, plays a significant role in modulating intramitochondrial processes, especially in the context of certain cardiac pathologies; however, the exact effects of alterations in cardiolipin on septic cardiomyopathy (SCM) are still debated and the underlying mechanisms remain incompletely understood. This study highlights a notable increase in the expressions of ALCAT1 and PLSCR3 during the advanced stage of lipopolysaccharide (LPS)-induced SCM. This up-regulation potential contribution to mitochondrial dysfunction and cellular apoptosis-as indicated by the augmented oxidative stress and cytochrome c (Cytc) release-coupled with reduced mitophagy, decreased levels of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2) and lowered cell viability. Additionally, the timing of LPS-induced apoptosis coincides with the decline in both autophagy and mitophagy at the late stages, implying that these processes may serve as protective factors against LPS-induced SCM in HL-1 cells. Together, these findings reveal the mechanism of LPS-induced CL changes in the center of SCM, with a particular emphasis on the importance of pathological remodeling and translocation of CL to mitochondrial function and apoptosis. Additionally, it highlights the protective effect of mitophagy in the early stage of SCM. This study complements previous research on the mechanism of CL changes in mediating SCM. These findings enhance our understanding of the role of CL in cardiac pathology and provide a new direction for future research.
Collapse
Affiliation(s)
- Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Chenyang Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Li Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
- Department of Anesthesiology, Wuhan Fourth Hospital & Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.H.); (C.W.); (X.F.); (L.H.); (B.W.); (X.H.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| |
Collapse
|
3
|
Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS One 2024; 19:e0296430. [PMID: 38271362 PMCID: PMC10810442 DOI: 10.1371/journal.pone.0296430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.
Collapse
Affiliation(s)
- Niu Liu
- College of P.E, Beijing Normal University, Beijing, China
- School of Physical Education, Weinan Normal University, Weinan, Shaanxi, China
| | - Zhiping Zhen
- College of P.E, Beijing Normal University, Beijing, China
| | - Xin Xiong
- College of P.E, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Niu N, Miao H, Ren H. Effect of miR-182-5p on apoptosis in myocardial infarction. Heliyon 2023; 9:e21524. [PMID: 38034598 PMCID: PMC10685254 DOI: 10.1016/j.heliyon.2023.e21524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Objective This study aimed to delineate the diagnostic significance of miR-182-5p by investigating its influence on myocardial apoptosis and function, employing both in vivo and in vitro myocardial infarction models. Methods A rat myocardial infarction model was established. Myocardial infarction area was detected using the 2,3,5-chlorotriphenyltetrazolium (TTC) method, myocardial enzyme spectrums were measured using enzyme-linked immunosorbent assay (ELISA), myocardial structure was detected by hematoxylin and eosin (HE) staining, myocardial apoptosis was detected using the TUNEL method, and expression levels of miR-182-5p and apoptosis-related molecules were detected using real-time fluorescence quantitative PCR (qPCR) and Western blot. miR-182-5p mimics and inhibitor were transfected into rat H9C2 cardiomyocytes and mouse HL-1 cardiomyocytes to establish a hypoxia model. Cardiomyocyte viability was detected using the CCK-8 method, expression levels of apoptosis-related indicators were detected using Western blot, and caspase-3/7 activity was detected using a caspase-3/7 activity detection kit. AAV9 adeno-associated virus was used to construct an miR-182-5p overexpression virus, which was injected into mice through the tail vein to create a mouse myocardial infarction model. TTC, ELISA, HE staining, echocardiography, real-time fluorescence qPCR, and Western blot methods were used to detect the effects of AAV9-miR-182-5p on myocardial injury, myocardial function, and myocardial apoptosis levels in myocardial infarction. Results The rat model displayed reduced miR-182-5p expression concurrent with an increase in apoptosis. The in vitro H9C2 and HL-1 hypoxia models revealed that miR-182-5p augmented the hypoxia-induced decrease in myocardial cell viability, suppressed Bcl-2 expression, and increased Bax, Bnip3, and caspase-3/7 activity levels. The injection of AAV9-miR-182-5p significantly exacerbated myocardial tissue damage, impaired myocardial function, and enhanced apoptosis. Conclusion miR-182-5p escalates myocardial injury during myocardial infarction by fostering apoptosis. Interventions that aim to reduce miR-182-5p levels might be crucial in halting the progression of myocardial infarction.
Collapse
Affiliation(s)
- Nan Niu
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Huangtai Miao
- Coronary Heart Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Hongmei Ren
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, 750021, PR China
| |
Collapse
|
5
|
Finelli C. Molecular Mechanisms and Mediators of Hepatotoxicity Resulting from an Excess of Lipids and Non-Alcoholic Fatty Liver Disease. GASTROINTESTINAL DISORDERS 2023; 5:243-260. [DOI: 10.3390/gidisord5020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
The paper reviews some of the mechanisms implicated in hepatotoxicity, which is induced by an excess of lipids. The paper spans a wide variety of topics: from the molecular mechanisms of excess lipids, to the therapy of hyperlipidemia, to the hepatotoxicity of lipid-lowering drugs. NAFLD is currently the leading cause of chronic liver disease in Western countries; the molecular mechanisms leading to NAFLD are only partially understood and there are no effective therapeutic interventions. The prevalence of liver disease is constantly increasing in industrialized countries due to a number of lifestyle variables, including excessive caloric intake, unbalanced diet, lack of physical activity, and abuse of hepatotoxic medicines. Considering the important functions of cell death and inflammation in the etiology of the majority, if not all, liver diseases, one efficient therapeutic treatment may include the administration of hepatoprotective and anti-inflammatory drugs, either alone or in combination. Clinical trials are currently being conducted in cohorts of patients with different liver diseases in order to explore this theory.
Collapse
Affiliation(s)
- Carmine Finelli
- Department of Internal Medicine, ASL Napoli 3 Sud, Via Marconi, 66, Torre del Greco, 80100 Napoli, Italy
| |
Collapse
|